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The photodimerization of 2-naphthalenecarbonitrile (2-NpCN) in a cucurbit[8]uril (CB[8]) aqueous
solution was investigated. Spectroscopic analysis and product distribution reveal that the use of CB[8]
as a host inverted the product selectivity from photodimers 2 and 3 in cyclohexane to photodimer 1 in a
CB[8] aqueous solution with a large rate acceleration under ambient temperature and pressure.

Optimizing the selectivity of photochemical reactions is one of the
most important topics of current research since photochemical re-
actions generally tend to give more than one product.1,2 During the
past few decades, many elegant and efficient strategies have been
designed towards this goal. The use of supramolecular systems
for selective photochemical reactions turns out to be one of the
successful approaches because the interactions of substrates with
supramolecular systems may alter the photochemical behaviors of
the confined substrates, and thus may direct the photochemical re-
action to the desired product(s).1–7 It is known that photochemical
reactions in isotropic solutions and supramolecular systems often
lead to different product distributions, or in some cases totally
different products.5–7

The cucurbit[n]urils (CB[n]), a family of pumpkin-like macro-
cyclic hosts with five, six, seven, eight or ten methylene-bridged
glycoluril units, respectively,8–13 feature a hydrophobic cavity and
polar carbonyl groups surrounding the portals. The varying cavity
and portal size of CB[n] are known to show remarkable affinity and
selectivity towards hydrophobic or/and positively charged guest
molecules in aqueous solutions.11–13 CB[8] is particularly attractive
because it is able to accommodate two aromatic molecules within
the cavity, forming a 1 : 2 complex with desired orientations. Kim
et al. found that the [2 + 2] photodimerization of diaminostilbene
dihydrochloride proceeded with a large rate acceleration and
a high stereoselectivity inside the cavity of CB[8] in aqueous
solution.14 Ramamurthy et al. reported that irradiation of trans-
1,2-bis(n-pyridyl)ethylene dihydrochlorides and trans-n-stilbazole
hydrochlorides, either in CB[8] aqueous media or in the solid state,
resulted in high yields of the syn photodimer.15,16 Sivaguru et al.
reported that the dimerization of coumarins could take place with
a catalytic amount of CB[8] in water, giving rise to the syn dimer
as the major product.17–19 Gromov et al. showed the stereospecific
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[2 + 2] autophotocycloaddition of styryl dyes in CB[8] aqueous
solution.20 Inoue and Kim et al. investigated the stereoselec-
tive photodimerization of 2-anthracene carboxylic acid and a-
cyclodextrin-appended anthracene mediated by CB[8].21 We have
made use of CB[8] as a microreactor to encapsulate 2-naphthalene-
labeled poly(ethylene glycol) and alkyl 2-naphtholate, leading to
the exclusive formation of photodimers in aqueous solution upon
irradiation with light.22,23

In the present work, we wish to report on the photodimerization
of 2-naphthalenecarbonitrile (2-NpCN) mediated by CB[8] in
aqueous solution. 2-NpCN was reported to form a photodimer
in 1971. On the basis of the MS, IR and 1H NMR spectra, Zweig
assigned the 1,4-bridged structure to photodimers.24 Later on,
Albini observed that the situation was more complicated.25 In
2008, we re-investigated this reaction and demonstrated that the
irradiation of 2-NpCN in solution with light l > 280 nm results
in the formation of three rigid cubane-like photodimers, anti-
head-to-head 1, anti-head-to-tail 2 and syn-head-to-tail 3 (Scheme
1).26 Despite of this, the conversion of 2-NpCN is only 23% after
17 h irradiation in an acetonitrile solution. Moreover, the ratio
of 1 to 2 and 3 varies with the solvent used, and 2 and 3 are
always present throughout the irradiation. Evidently, the quantum
yield and selectivity of the photodimerization leave much to be
desired. Herein, we study the CB[8]-mediated photodimerization
of 2-NpCN in aqueous solution. CB[8] was expected to bring
two 2-NpCNs into close proximity with a desirable orientation
to facilitate photodimerization with a remarkable selectivity and
efficiency.

Scheme 1 Photodimerization of 2-NpCN.

The inclusion of 2-NpCN within the cavity of CB[8] was
achieved by the sonication of 2-NpCN (20 mmol) with CB[8]
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(10 mmol) in an aqueous solution for 3 h at 50 ◦C. Filtration
through a 0.2 mm membrane then afforded a saturated aqueous
solution of the inclusion complex. Generally, the irradiation was
carried out in a Pyrex reactor purged with nitrogen at room
temperature. A 500 W high-pressure mercury lamp was used
as the light source. A quartz jacket with water circulation was
used to cool the lamp. A light filter was placed outside the
quartz jacket to cut off light below 280 nm so as to protect
the photodimer from decomposition. The photodimerization
process was monitored by UV-vis absorption spectroscopy. Along
with the irradiation, the absorbance of the typical bands for 2-
NpCN quickly decreased. The irradiation was continued until
the absorbance no longer changed. Following extraction with
chloroform, product analysis was performed by high performance
liquid chromatography (HPLC) and NMR spectroscopy. As we
described previously,22 photodimers 2 and 3 are too similar to
be distinguished using an achiral column. Therefore, an achiral
Intersil ODS-3 column was used first to separate photodimer 1
from the mixture of photodimers 2 and 3 (10 ¥ 250 mm; eluent:
acetonitrile : water = 6 : 4; room temperature; flow rate 2.0 mL
min-1; UV detection at 220 nm), and then photodimers 2 and
3 were distinguished by a chiral IA column (Daicel Chemical
Industries, Ltd., 10 ¥ 250 mm; eluent: n-hexane : ethanol = 5 : 5;
room temperature; flow rate 1.0 mL min-1; UV detection at 254
nm). It is significant that the irradiation of 2-NpCN in the presence
of CB[8] is efficient and selective. Generally after 8 h of irradiation,
the conversion of 2-NpCN approached 73% and the yield of the
cubane-like photodimers was up to 98% for 1, 1% for 2 and 1%
for 3, based on the consumption of the starting material (Table 1).
It is evident that the yield of photodimer 1 is much improved from
31% in cyclohexane to 98% in an aqueous solution of CB[8], while
that of 2 and 3 decreases dramatically. By way of contrast, the
irradiation of a 2-NpCN aqueous solution does not result in any
photodimer formation. Compared with the conversion of 2-NpCN
in a cyclohexane solution, which is only 13% after 17 h irradiation,
CB[8] clearly templates the photodimerization of 2-NpCN with a
large rate acceleration in aqueous solution. Strikingly, the use
of CB[8] as a host inverts the product selectivity from 2 and 3
in cyclohexane to 1 in CB[8] aqueous solution (Scheme 2). The
difference in the ratio of 1 to 2 and 3 (ca. 49 : 1 in CB[8] aqueous
solution but 1 : 2 in cyclohexane) indicates that irradiation of the
2-NpCN in CB[8] aqueous solution results in photodimerization
with a remarkable regioselectivity (anti-head-to-head 1 as the main
product).

The interaction of CB[8] with 2-NpCN in aqueous solution
was confirmed by UV-vis, fluorescence and 1H NMR analysis.
With the addition of CB[8] into an aqueous solution of 2-NpCN

Table 1 Conversion and yield for the photodimerization of 2-NpCN in
the absence and presence of CB[8] at room temperature, respectively

Photodimer
yield (%)

Entry Medium
Irradiation
time/h

Conversion
(%) 1 2 3

1 Cyclohexane 17 13 31 38 31
2 Acetonitrile 17 23 85 8 7
3 H2O 8 0 0 0 0
4 CB[8]/H2O 8 73 98 ~1 ~1

Scheme 2 Photodimerization of 2-NpCN.

(40 mM), the solubility decreased, therefore causing a decrease in
the absorption (Fig. 1). The fluorescent changes of 2-NpCN toward
CB[8] are pronounced. In the absence of CB[8], 2-NpCN shows the
monomer emission of naphthalene derivatives with a maximum at
354 nm. The progressive addition of CB[8] to the 2-NpCN aqueous
solution led to a gradual growth with a maximum at 410 nm,
which is typical excimer emission of a 2-naphthalene chromophore
(Fig. 2a).23 The excitation spectra for the monomer and excimer
emissions, monitored at 354 and 410 nm, respectively, are similar.
However, the spectrum for the latter is slightly but evidently red-
shifted (Fig. 2b), indicating that the excimer originates from the
pair of naphthalene groups that exist prior to excitation.

Fig. 1 UV-vis spectra of 2-NpCN in the absence (black) and presence of
0.5 equiv. CB[8] (red) in H2O at room temperature (the concentration of
2-NpCN is 40 mM, 1 cm quartz cell).

The 1H NMR spectra of 2-NpCN in the absence and presence
of CB[8] are shown in Fig. 3. The encapsulation-induced upfield
chemical shifts for the aromatic naphthoate resonances are consis-
tent with the inclusion of the naphthalene groups in the shielding
hydrophobic cavity. Because no separate peaks for the free and the
bound guests are observed, the rates of the encapsulating process
are fast on the 1H NMR spectroscopy time scale.

From these results, it is clear that the environment of 2-NpCN
during irradiation is a major factor in both the efficiency and
selectivity of the photodimerization. The high regioselectivity of
the CB[8]-mediated photodimerization of 2-NpCN is illustrated
in Scheme 3. The cavity of CB[8] accommodates two molecules
of 2-NpCN and aligns them in a geometry that is favorable for
the occurrence of photodimerization. As described above, the
irradiation of 2-NpCN in solution results in the formation of
three rigid cubane-like photodimers, anti-head-to-head 1, anti-
head-to-tail 2 and syn-head-to-tail 3. Herein, there are three kinds
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Fig. 2 (a) Fluorescence spectra of 2-NpCN (5 mM) with various concen-
trations of CB[8] in H2O at room temperature (0, 0.2, 0.4, 0.5, 0.6, 0.8,
1.0, 2.0 and 2.5 equiv. of CB[8], lex = 296 nm). (b) Excitation spectra of
2-NpCN in the presence of CB[8] monitored at lem = 354 nm ( ) and
410 nm (---), respectively.

Fig. 3 1H NMR spectra of 2-NpCN (a) in the absence and (b) in the
presence of CB[8] in D2O.

of isomers, precursors a, b and c (Scheme 3), orientating the
two carbonitrile groups to the portal of the barrel-shaped CB[8]
suitable for the photodimerization. On the other hand, the size of
1 (5.98 ¥ 6.60 ¥ 7.03 Å3) from its crystal structure suggests that it
could tightly fit in the cavity of CB[8] (6.90 ¥ 6.90 ¥ 9.10 Å3), while
that of 2 (4.85 ¥ 7.85 ¥ 7.73 Å3) and 3 (4.88 ¥ 8.00 ¥ 7.69 Å3) are too
large to be accommodated into the 6.90 Å cavity of CB[8] for their
formation, which appears to play a crucial role in determining the
selectivity of the photodimerization.

In summary, we have demonstrated that CB[8] can medi-
ate the photodimerization of 2-NpCN in aqueous solution.
Spectroscopic characterization and product distribution reveal
that CB[8] encapsulates two molecules of 2-NpCN and aligns
them to favour cubane-like photodimer 1 formation with a
large rate acceleration under ambient temperature and pressure,
whereas no photodimers could be detected in a host-free aqueous
solution.

Scheme 3 CB[8]-mediated photodimerization of 2-NpCN.
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