
Cell polarity results from a vectorial axis that directs 
the internal organization of a cell, and is observed 
in most differentiated cell types of metazoans and in 
unicellular organisms, such as yeast, ciliated protozoa 
and even prokaryotes. Although observed in different 
forms in diverse cell types and species, cell polarity is 
defined by two fundamental properties: the asymmetric 
accumu lation of mobile components (often regulatory 
molecules) between opposite poles of a cell; and the 
orientated organization of inherently polar cytoskeletal 
filaments (particularly actin and microtubules) along the 
axis of polarity (BOX 1). These properties coexist in most 
polarized cells, and their interactions are crucial to both 
the establishment and the maintenance of cell polarity.

Placement of an intrinsically polar object inside a 
symmetrical entity breaks the host entity’s symmetry. 
Actin filaments (or microfilaments) and microtubules 
are polar polymers that are composed, respectively, of 
globular actin (G-actin) subunits that bind and hydrolyse 
ATP, and α- and β-tubulin heterodimeric subunits that 
bind and hydrolyse GTP. Polarity results from head-to-
tail association of protein subunits, resulting in polymer 
lattices in which all of the subunits align in the same 
direction and the two ends differ structurally (BOX 1). 
Actin and microtubules are also dynamic polymers, of 
which each end can either polymerize or depolymerize 
and net growth depends on free subunit concentrations1,2. 
Rate constants that govern growth and shrinkage differ 
at the opposite ends of the polymers owing to structural 
differences of the two ends. Such dynamic differences 
are enhanced through nucleotide hydrolysis by actin  
and tubulin subunits. The ability to undergo fast turn-
over and assembly enables actin and microtubules to 

reorganize rapidly and locally in response to polarity 
signals. The cell further capitalizes on the intrinsic polar-
ity and dynamics of actin and microtubules through a 
large number of cytoskeleton-associated proteins, which 
translate asymmetry in the structure and dynamics of the 
polymer into polarized functions. Intermediate filaments, 
however, are nonpolar and are not generally involved in 
the generation of cell polarity3. This generalization might 
not last, as recent studies have shown that members of 
the septin family, which form nonpolar polymers that 
resemble intermediate filaments, are important for cell 
polarity in a number of cell types4–6.

A class of cytoskeleton-associated proteins that are 
particularly important for cell polarity are the motor 
proteins. These power unidirectional movement along 
actin filaments or microtubules by irreversibly mov-
ing from one tightly bound conformation to another 
using the energy of ATP hydrolysis (for recent reviews, 
see Refs 7–10). Myosins are motor proteins for actin, 
and most members of the myosin superfamily (except 
myosin-VI) move towards actin barbed ends (BOX 1). 
Some myosins, such as myosin-V, move processively 
along actin filaments (that is, they move many consecutive 
steps before dissociating from the filament) and are thus 
suitable for transport over long distances. Other myosins, 
in particular myosin-II, exhibit low processivity but can 
generate contractile movement through the sliding of 
actin filaments. Microtubule motors encompass kinesins 
and dynein. Most kinesins move towards microtubule 
plus ends with varying degrees of processivity, whereas 
dynein moves processively towards microtubule minus 
ends in the presence of the dynactin complex11 (BOX 1). In 
principle, cargo molecules or organelles can be trafficked 
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Abstract | Cell polarity relies on the asymmetric organization of cellular components and 
structures. Actin and microtubules are well suited to provide the structural basis for cell 
polarization because of their inherent structural polarity along the polymer lattices and 
intrinsic dynamics that allow them to respond rapidly to polarity cues. In general, the actin 
cytoskeleton drives the symmetry-breaking process that enables the establishment of a 
polarized distribution of regulatory molecules, whereas microtubules build on this 
asymmetry and maintain the stability of the polarized organization. Crosstalk coordinates 
the functions of the two cytoskeletal systems.
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by motor proteins to specific cellular locations once a cell 
has established orientated actin or microtubule arrays.

We focus on how polarized arrays of actin and micro-
tubules are generated and how they contribute to the 
different phases of cell polarity through their dynamic 
assembly and transport functions. To facilitate the com-
parison of actin and microtubule functions, we divide 
the process of cell polarity development into ‘symmetry 
breaking’ and ‘maintenance of polarity’ processes. The 
term symmetry breaking was chosen over ‘establish-
ment of polarity’ to highlight the rapid, decisive cellular 
transition from a symmetric distribution of relevant 
constituents to an asymmetric distribution along a 
certain cellular axis. In many well-studied systems, 
such as yeast and neutrophils, symmetry breaking can 
occur as a stochastic process that is driven by intrinsic 
cellular mechanisms. In other systems, however, such 
as Caenorhabditis elegans zygotes, cellular symmetry 
breaking might depend on an initial external cue (for 
example, sperm entry). Although our focus in this 
article is strictly on cytoskeletal-based mechanisms, 
we also note that there are important contributions by 
membrane constituents, particularly phosphoinositides 
(for example, Ref. 12), and by the cooperative assembly 
of signalling complexes (for example, Ref. 13) to both 
symmetry breaking and polarity maintenance.

Forming polarized cytoskeletal arrays
For cytoskeletal polymers to carry out polarized traffick-
ing or localized functions through the dynamics of their 
ends, actin and microtubules must assemble into organ-
ized arrays. The rate-limiting step for spontaneous actin 
and microtubule polymerization is nucleation — the for-
mation of small oligomers that can rapidly elongate14,15. 
A key mechanism in the assembly of polarized actin 
arrays is the activation of actin-nucleation factors, such 
as the actin-related protein-2/3 (Arp2/3) complex and 
formin-family proteins, at defined locations16 (fIG.1a). In 
cells that undergo crawling motility, Arp2/3 complex-
nucleated actin filaments form a branched actin network 
in the lamellipodium, with filament barbed ends facing 
the leading-edge membrane17,18. This polarized actin 
organization is determined not only by the intrinsic 
topology of Arp2/3 complex-mediated actin branch-
ing, but also by plasma membrane-associated proteins 
that control the activation of the Arp2/3 complex and 
regulate the elongation and turnover of the nucleated 
filaments. Membrane-bound Rho-family GTPases activ-
ate actin-nucleation factors either directly (in the case 
of formins) or indirectly through nucleation-promoting 
factors (nPFs)19. Through these upstream regulatory fac-
tors, Arp2/3 complex- or formin-based actin nucleation  
occurs maximally near the membrane at sites of Rho 
GTPase activation.

Whereas nucleation is the principal mechanism that 
regulates actin during cell polarization, nucleation of 
microtubules usually occurs near the cell centre at the 
centrosome (or other microtubule-organizing centres 
(MTOCs)), which makes it distal to membrane-derived 
signals that stimulate cell polarity. Consequently, the 
initial events that localize and orientate microtubules 

Box 1 | Basic properties of actin filaments and microtubules

Actin filaments are composed of subunits that are orientated in the same direction, which 
results in a polarized surface lattice and two structurally distinct ends (barbed and pointed; 
see figure, part a). Motor proteins (myosins) move in a unidirectional manner along the 
filament surface owing to repeated interactions with the subunits in consistent 
orientations. The barbed and pointed ends of an actin filament exhibit different subunit 
association and dissociation rates. They also exhibit different critical concentrations for  
the assembly of ATP–actin as a result of ATP hydrolysis and phosphate release soon after 
subunit incorporation into the filament. Asymmetry in the state of the nucleotide that is 
bound along the filament, and structural differences between the two ends enable many 
actin-binding proteins to differentially regulate their dynamics and stability in vivo.

Microtubules are composed of α-tubulin and β-tubulin heterodimeric subunits that are 
orientated in the same direction, which results in a polarized surface lattice and two 
structurally distinct ends (plus and minus ends; see figure, part b). The minus ends of 
microtubules are often anchored at the centrosome or other microtubule-organizing 
centres (MTOCs). Motor proteins (kinesins and dynein) move in a unidirectional manner 
along the filament surface owing to repeated interactions with the consistently 
orientated subunits. Tubulin hydrolyses GTP shortly after assembly, resulting in a cap of 
GTP-containing tubulin subunits on growing plus ends. Because GTP–tubulin and 
GDP–tubulin have different dissociation rates, microtubules depolymerize rapidly 
following the loss of the GTP cap. The alternation between growth (top panel) and 
shrinkage (bottom panel) of microtubules, with infrequent transitions, is known as 
dynamic instability and contributes to the ability of microtubules to search for polarity 
factors. Growing and shrinking microtubules have different structures at their ends and 
this is thought to allow shrinking microtubules to exert force on structures (for example, 
kinetochores) that may remain associated.

Note that microtubules can assemble in A or B lattices with different lateral contacts 
between protofilaments. The microtubule depicted is in the B lattice (lateral contacts αα 
and ββ with a seam of αβ). Most evidence suggests that the B lattice is the predominant 
form in cells. However, a recent study suggests that microtubule plus end-tracking 
proteins (+TIPs) might drive microtubules into the A lattice, in which the lateral contacts 
are αβ (Ref. 174).
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during cell polarization mainly involve factors that 
regulate the dynamic plus ends of microtubules. One 
frequently used mechanism during cell polarization is 
microtubule capture by cortical factors that increase the 
stability of the plus ends and/or generate pulling forces 
on microtubules20,21 (fIG. 1b). Other mechanisms include 
alterations in the assembly properties of microtubules 
and the bundling of microtubules.

Cortical capture usually involves the interaction 
of two classes of proteins: proteins that are specifically 
associated with the plus ends of microtubules (termed 
+TIPs) and cortical factors that are controlled by Rho 
GTPases and other membrane-proximal signalling fac-
tors (TABLe 1). +TIPs include proteins that are primarily 
associated with the plus ends of microtubules, for exam-
ple, end-binding protein-1 (eb1), and other proteins, 
such as cytoplasmic dynein, that are also found at other 
sites in the cell. Depending on the factors that are activ-
ated, cortical capture results in a range of stabilization 
from transient increases in microtubule pausing, which 
last for seconds to minutes, to the long-term capping 
of microtubules, which persists for hours. Microtubule 
capture increases the local microtubule density and also 
provides a means to enhance the delivery of cargoes to 
specific sites. The best example of direct delivery comes 
from Schizosaccharomyces pombe, in which transiently 
paused microtubules at the cell poles deliver tip elonga-
tion aberrant protein-1 (Tea1; a kelch-repeat protein) and 
Tea4 (an SH3-domain protein) to regulate actin filaments 
through the recruitment of the formin For3 (Ref. 22).  

In mammalian cells, long-term (>10–30 minutes) stabi-
lized microtubules become post-translationally modified, 
and this is known to enhance kinesin-dependent motility 
in a number of cases (see below).

In microtubule capture that involves dynein, pulling 
forces that are directed towards cortical sites can influ-
ence centrosome or MTOC position and hence micro-
tubule nucleation sites (fIG. 1b). Originally described 
in the dividing cells of Saccharomyces cerevisiae and in 
asymmetrically dividing C. elegans early embryos23,24, 
dynein-dependent centrosome positioning also occurs 
in polarized migrating cells and in T cells that interact 
with targets (see below). Pulling forces on microtubules 
also result from captured microtubules that undergo 
controlled shrinkage, although this mechanism is only 
known to occur in dividing S. cerevisiae25 and perhaps 
C. elegans one-cell embryos26.

Cellular symmetry breaking
Historically, the cytoskeleton and its motors were 
viewed to be under the passive instruction of regula-
tory molecules that have been localized by pre-existing 
spatial cues. However, results from many model systems 
have increasingly strengthened a revised view that the 
cytoskeleton not only mediates the downstream func-
tions of polarized signals but, more importantly, also 
drives the symmetry-breaking process by localizing key 
regulatory molecules to specific cortical sites through 
motor proteins and the dynamic assembly of mutually 
exclusive structures.

Figure 1 | establishment of orientated cytoskeletal arrays. a | The actin-related protein-2/3 (Arp2/3) complex and 
formin-family proteins are highly conserved actin-nucleation factors that are important for assembling polarized 
actin-filament arrays16. The Arp2/3 complex is a seven-subunit complex that binds to an existing actin filament and 
nucleates a new filament at a ~70° angle through its two actin-related proteins, ARP2 and ARP3 (left panel). Formin proteins 
nucleate actin filaments through their conserved formin homology-2 (FH2) domain, and filament elongation is facilitated by 
the FH1 domain, which binds to profilin (right panel). Actin nucleation occurs primarily at the cell cortex because 
nucleation factors are activated directly (for example, some formins) or indirectly (for example, the Arp2/3 complex) 
through nucleation-promoting factors (NPFs) by the membrane-bound Rho-family GTPases (R–GTP indicates an active 
Rho-family GTPase). The Arp2/3 complex nucleates the formation of dendritic actin arrays, whereas formins nucleate 
straight actin filaments that are often decorated with tropomyosin. Depending on the types of crosslinking or motor 
proteins that are present, these filaments can be organized into parallel bundles (as shown) or contractile networks  
(see fIG. 2b,c). b | Microtubule capture near membranes is mediated by a diverse set of Rho GTPase effectors (TABLe 1) that 
transmit the activation of Rho GTPases into action on the plus ends of microtubules. Most microtubule capture events 
stabilize microtubules at least transiently. Proteins that bind to the plus ends of growing microtubules (+TIPs) also 
contribute to microtubule capture (left panel), and many of these proteins also regulate microtubule dynamic instability by 
altering assembly rates or transitions between growing and shrinking microtubules. Microtubule capture that involves the 
motor protein dynein (right panel) can generate pulling forces on microtubules and contribute to centrosome positioning.
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PAR protein
One of a set of six proteins  
that were initially identified in 
Caenorhabditis elegans. 
Inactivation of the PAR proteins 
results in a partitioning-defec-
tive phenotype in early 
embryos. PAR proteins are now 
recognized to be widely 
involved in cell polarity.

Symmetry breaking through a processive myosin. The 
budding yeast S. cerevisiae switches from isotropic to 
polarized growth to form a bud during vegetative prolif-
eration, or during the formation of a mating projection 
in response to pheromone. Two types of actin struc-
tures have been implicated in yeast polarized growth: 
actin cables, which serve as growth-site-directed trans-
port highways for cargoes, such as secretory vesicles, 
protein–RnA complexes and various organelles; and 
cortical actin patches, which are endocytic structures 
that are concentrated in the general area of the growth 
site27. Actin cables are made up of parallel arrays of actin 
filaments that are nucleated by two formins, bni1 and 
bnr1, and are assembled into long bundles through 
the stabilization and bundling effects of tropomyosins 
and fimbrin, respectively28–31. Formation of orientated 
actin cables relies on the localized activation of bni1 
and/or bnr1. In turn, this activation relies on active Rho 
GTPases, as do other diaphanous (Dia)-related formins. 
Such Rho GTPases include Cdc42 and four of the Rho 
proteins32. Cdc42 is the master regulator of cell polar-
ity in yeast, as in most other eukaryotes33 (see also the 
review by Iden and Collard in this issue). Cdc42 binds 
to the n-terminal Rho-binding domain of bni1 and is 
required for the polarized orientation of actin cables34. 
However, genetic analysis suggested that the Rho pro-
teins might be the primary GTPases that control formin 
activation, whereas Cdc42 has a yet undefined role in 
localizing this process to the polar cortex35,36.

even though the biochemical steps between Cdc42 
and the polarized assembly of actin cables are elusive, it 
is clear that the formation of actin cables is an important 
target of Cdc42 to control polarized transport. However, 
recent studies in yeast suggest that actin, in turn, affects 
Rho GTPase localization through its transport func-
tion37,38. Such a feedback interaction enables actin to 
have an active role in the symmetry-breaking process  
that leads to a polarized distribution of active GTPase. 

This is best appreciated in an experimental system 
in which nonpolarized, G1-arrested yeast cells can 
polarize spontaneously on induction of constitutively 
active Cdc42 (fIG. 2a). blocking actin polymerization 
or myosin-V transport prevents Cdc42–GTP-induced 
spontaneous polarization, indicating that actin does not 
passively respond downstream of Cdc42 (Ref. 37). A math-
ematical simulation has shown that a positive-feedback 
loop that is composed of Cdc42-directed actin-cable 
formation and actin-cable-mediated Cdc42 transport 
to the plasma membrane is sufficient, in theory, to turn 
an initially random distribution of Cdc42–GTP on the 
cortex into a stable cortical Cdc42 localization, towards 
which actin cables are orientated. The contribution of 
this actin-based symmetry-breaking mechanism to 
physiological polarization was later shown39. Along with 
this, an earlier study13 also found a parallel cytoskeleton- 
independent mechanism for symmetry breaking that 
might involve the cooperative assembly of a signalling 
complex that regulates Cdc42 activation.

Symmetry breaking through a contractile myosin. Cell 
polarity is crucial for asymmetric cell divisions, a develop-
mental mechanism that is required for cell fate divers-
ification. In the C. elegans zygote, an asymmetric cell 
division occurs along a plane that is perpendicular to the 
anterior–posterior (A–P) polarity axis that is established 
shortly after fertilization24. A–P polarity is def ined by the 
localization of distinct sets of PAR proteins (partitioning 
defective proteins) to opposing cortical hemispheres of 
the zygote: the highly conserved proteins PAR-3, PAR-6 
and atypical protein kinase C (aPKC) localize to the ante-
rior cortex of the zygote, whereas other proteins, such 
as PAR-1 and PAR-2, localize to the posterior cortex. 
This asymmetric patterning of cortical determinants is 
required for the correct orientation and positioning of the 
first mitotic spindle, which in turn determines the plane 
of the first cell division.

Table 1 | Microtubule capture factors 

cortical 
factor

regulation +TiP microtubule effect refs

Metazoa

IQGAP1 CDC42 and Rac CLIP170 Transient stabilization (24–120 seconds) 161

mDia1 Rho EB1 and APC Long-term stabilization (hours) 129,131,162

LL5β PI3K? CLASP (Rac and GSK3β 
regulate CLASP)

Transient to long-term stabilization 136,138,163, 
164

PAR6 CDC42 Dynein and dynactin Unknown 122,123,126

β-catenin Unknown Dynein Transient stabilization (>2 minutes) 165,166

Saccharomyces cerevisiae

Unknown Cdc42 and Rho Bim1 and Kar9 Transient stabilization and shrinkage 167–169

Num1 Unknown Dynein and dynactin Transient stabilization and pulling 167,170

Schizosaccharomyces pombe

Mod5 Unknown Tea1, Tea2, Tea4, Tip1 and Mal3 Transient stabilization (90 seconds) 171–173 

APC, adenomatous polyposis coli; CLASP, CLIP-associating protein; CLIP170, cytoplasmic linker protein-170; EB1, end-binding 
protein-1; GSK3β, glycogen synthase kinase-3β; IQGAP1, IQ motif-containing GTPase-activating protein-1; PAR6, partitioning 
defective-6; PI3K, phosphoinositide 3-kinase; +TIP, microtubule plus end-tracking protein; Tea, tip elongation aberrant protein.
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Actomyosin
A complex of myosin and actin 
filaments that is responsible for 
a range of cellular movements 
in eukaryotic cells. Myosins can 
translocate vesicles or other 
cargo on actin filaments or 
slide actin filaments to 
generate contraction.

The localization of anterior determinants is achieved 
in an actin- and myosin-dependent manner. How ever, in  
contrast to the mechanism in yeast, the transport pro-
cess is powered by myosin-II40–42. Sperm entry into  
the oocytes locally weakens the actomyosin network at the 

presumptive posterior pole, leading to net contraction of 
the network in the anterior direction (fIG. 2b). PAR-3 and 
PAR-6 localize to punctate structures that dynamically 
associate with cortical actin and move along with the 
contractile network. The depletion of myosin-II using 

Figure 2 | mechanisms of actin-based symmetry breaking in the establishment of cell polarity. a | Symmetry 
breaking through an actin and myosin-V-mediated positive-feedback loop. G1-arrested (nonpolar) yeast cells can be 
induced to polarize spontaneously following expression of constitutively active Cdc42. The images show the distribution 
of actin in G1 cells that express non-activated Cdc42 (left) or a constitutively active form of Cdc42 (right; left panels). 
Amplification of stochastic asymmetry in the distribution of Cdc42 through a feedback loop that is composed of 
Cdc42-stimulated, polarized formation of actin cables and actin cable- and myosin-V-mediated Cdc42 transport (right 
panel). This positive-feedback loop can lead to symmetry breaking by amplifying stochastic variation in Cdc42 distribution 
along the membrane. Scale bar, 3 mm. b | Symmetry breaking through an actin- and myosin-II-based contractile network in 
a Caenorhabditis elegans one-cell embryo. The images show the cortical network of myosin-II before (left) and after (right) 
symmetry breaking (left panels). Arrowheads indicate furrows on the egg surface. An asterisk marks the site of sperm entry. 
Sperm entry locally weakens the contractile network by inhibiting Rho activation, and this initial asymmetry is amplified 
through feedback interactions between the actomyosin contractile machine and partitioning defective (PAR) and Rho 
signalling modules, eventually driving stable segregation of anterior and posterior determinants and the establishment of 
anterior–posterior polarity (right panel). c | Establishment of front-to-back polarity in chemotactic neutrophils through 
mutual inhibition at the level of pathways and cytoskeletal assembly. The fluorescent images show the concentration of 
Rho (green) and dense protrusive actin (red) to the back and front, respectively, of neutrophils before (left) and after (right) 
stimulation with the chemoattractant formylated Met-Leu-Phe (fMLP) (left panels). Actin was also present at the back,  
but the fluorescence signal was too low for it to be observed in these images. Mutual inhibitory interactions between  
the Rho and Rac signalling pathways and between contractile and protrusive actin structures lead to localization of  
active Rho and Rac and to assembly of their respective actin structures to opposing cell ends, thus establishing front–back 
polarity (right panel). Scale bar, 10 mm. aPKC, atypical protein kinase C; Arp2/3, actin-related protein-2/3; R–GTP, an active 
Rho-family GTPase. Images in part a courtesy of R.L. Images in part b modified, with permission, from Ref. 42  (2004) Cell 
Press. Images in part c modified, with permission, from Ref. 71  (2003) Cell Press.
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A thin cellular process that 
contains long, unbranched, 
parallel bundles of actin 
filaments.

RnA interference (RnAi) prevents the concentration of 
these proteins towards the anterior cortex42. However, 
PAR-3 and PAR-6 proteins are not passive cargoes of the 
contractile network, as contractile movement is severely 
diminished in embryos that lack these proteins42. The 
posteriorly localized PAR-2, however, inhibits cortical 
recruitment of myosin and posterior-directed contractile 
movement during the maintenance phase. PAR-2 and 
the anteriorly localized PAR-3–PAR-6–aPKC cohort 
also antagonize the ability of one another to associate 
with the cortex43,44. This network of interactions (fIG. 2b) 
might strongly amplify the small initial asymmetry in 
contractile force that is induced by sperm entry, lead-
ing to stable segregation of the PAR proteins and thus  
well-defined cell polarity.

It is interesting that this symmetry-breaking system 
seems to require the spatial cue that is provided by 
the sperm entry site, whereas in many other polariza-
tion events spatial cues orientate the polarity axis but 
might not be required for symmetry breaking per se45. 
The sperm cue seems to affect the activation of Rho 
GTPase46–48, which exerts dual control over the assem-
bly of the actomyosin network: Rho–GTP stimulates 
myosin-II activation and filament assembly by promot-
ing the phosphorylation of the myosin-II regulatory 
light chain (MRlC), and also activates formin pro teins  
to nucleate actin polymerization49. It will be interesting to  
determine, perhaps with the help of mathematical mod-
elling, whether the C. elegans zygote system is capable of 
spontaneous symmetry breaking through the feedback 
loops in the network that connect PAR proteins and 
actomyosin contractility.

The involvement of an actomyosin contractile 
network in cell polarization might not be unique to  
C. elegans zygotes, as suggested by recent findings in 
epithelial cells. epithelial cells in their differentiated 
state exhibit an apical–basal polarity, which defines the 
microvilli-rich apical domain and a basal–lateral domain 
that mediates cell–cell and cell–matrix attachment50. 
There is strong evidence for the roles of cell–cell and 
cell–matrix contacts in the establishment and mainte-
nance of apical–basal polarity. However, a surprising 
study has found that ectopic activation of the kinase 
lKb1 in epithelial cells induces spontaneous symmetry 
breaking and establishes well-defined apical and basola-
teral domains in the absence of cell–cell contacts51. lKb1 
is a tumour suppressor protein that is homologous to 
C. elegans PAR-4, which is required for the specification 
of the posterior cortex52. More recently, it was found 
that in this polarity model, the target of lKb1 is the 
AMP-activated kinase AMPK, the activation of which 
also responds to energy deprivation53,54. At least one of 
the substrates of AMPK in the induction of cell polarity  
is MRlC. Remarkably, expressing a constitutively 
phosphorylated (active) form of MRlC was sufficient 
to induce symmetry breaking in otherwise nonpolar-
ized epithelial cells. Although mechanistic details of 
this process are unclear, it is enticing to speculate that 
a mechanism that involves the activation of myosin-II-
based contractility, which is similar to that described in 
C. elegans, might be key to the establishment of epithelial 

polarity, given that PAR-3, PAR-6 and aPKC are required 
for the establishment of epithelial polarity55. 

Symmetry breaking through competitive actin assembly. 
Polarization is an important first step in cell migration, 
through which cells establish a protrusive front (the 
leading edge) and contractile rear. Although both are 
rich in actin, the filaments of these cellular domains  
are organ ized into distinct structures18. The leading edge 
is a protrusive actin-rich structure, in which the filaments 
are organized in dendritic (in lamellipodia) or parallel (in 
filopodia) arrays. lamellipodial actin filaments are likely to 
be generated through nucleation by the Arp2/3 complex, 
although one study has suggested that lamellipodial actin 
might also be assembled in an Arp2/3-independent man-
ner56. Other actin-binding proteins, such as ADF or cofilin 
(hereafter referred to as ADF/cofilin) and capping protein, 
control the dynamics of the actin at the cell front57. Actin 
at the rear of migrating cells is organized into contractile 
structures that are rich in myosin-II, a protein that is 
mostly absent in the protrusive lamellipodia. Contractile 
actin filaments are often coated with tropomyosins, a fam-
ily of long coiled-coil polypeptides that form head-to-tail 
interactions along actin filaments58, which can influence 
myosin-II mechanochemistry59 and might also facilitate 
actin polymerization through formins60.

In terms of their assembly, these two types of actin 
structures are mutually exclusive, both at the structural 
level and at the regulatory level. In vitro biochemistry 
shows that tropomyosin-decorated filaments cannot 
be branched by the Arp2/3 complex to form dendritic 
arrays61, possibly owing to an overlap between the  
tropomyosin-binding site and the Arp2/3-binding site on 
actin62. Actin filaments that are bound to certain tropo-
myosin isoforms are also protected from severing and 
depolymerization by ADF/cofilin63,64. In addition, these 
two types of actin structures might compete for actin 
monomers during their assembly. Arp2/3-mediated actin 
nucleation is stimulated by Rac, whereas Rho promotes 
the assembly of contractile actomyosin networks19,49. In 
turn, protrusive actin and myosin-II positively influence 
the activation of their upstream GTPases65,66. Active Rho 
and Rac GTPases also mutually inhibit each other67–70  
(see also the review by Iden and Collard in this issue).

In neutrophils, the mutual exclusivity of the front and 
rear actin assembly pathways is crucial for polarization 
and directional motility in response to chemoattract-
ants71,72 (fIG. 2c). Inhibition of Rho or its downstream tar-
gets, such as myosin-II, induces multiple protrusive actin 
structures and causes the failure to establish a unique axis 
of cell polarity. Conversely, inhibition of protrusive actin 
assembly results in the spreading of active RhoA, which 
is normally restricted to the cell rear. A mathematical 
model based solely on mutually inhibitory interactions 
between the front and back pathways has shown that 
this network is sufficient to drive symmetry breaking 
and stable segregation of the front and rear cytoskeletal 
domains73. This model might also explain the ability of 
mechanically induced contraction of nonpolarized cells 
to generate sustained front–back polarity and to initiate 
migration74.
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Symmetry breaking through microtubules. neurons are 
highly polarized cells that typically have a single long, 
thin process (the axon) to transmit information, and 
multiple shorter and thicker processes (the dendrites) 
to receive information. Studies of cultured embryonic 
rodent hippocampal neurons have provided a wealth of 
information on the factors that are involved in specify-
ing neuronal cell polarity75,76. Cultured hippocampal 
neurons initially extend multiple morphologically 
indistinguishable, undifferentiated neurites. This 
symmetry is broken when one of the neurites begins 
to grow rapidly and acquires axonal markers (such as 
dephosphorylated tau, a microtubule-associated protein 
(MAP)), whereas the other neurites remain short. Over 
time in culture, the short neurites begin to grow and dif-
ferentiate into dendrites by acquiring dendritic markers 
(such as MAP2).

It has long been known that microtubules in neu-
ronal processes are more stable than the dynamic 
microtubules in proliferating cells, as shown by their 
resistance to microtubule-depolymerizing agents and 
by their higher levels of post-translationally modified 
tubulin77–79. In a recent study of hippocampal neurons, 
quantification of the ratio of acetylated tubulin to total 
tubulin showed an elevated ratio in axons compared 
with undifferentiated neurites80. even before axon 
form ation, one of the morphologically indistinguishable 
neurites accumulated acetylated tubulin. Importantly, 
microtubule stabilization was sufficient to induce axon 

formation, as local stabilization of microtubules in an 
undifferentiated neurite by photoactivation of a taxol 
analogue provided strong bias for the treated neurite to 
become an axon (fIG. 3).

These recent studies make it important to determine 
how neurons initially stabilize microtubules in the axon. 
A large number of factors have been implicated in the 
regulation of the stability of microtubules in axons, 
including kinases (for example, glycogen synthase 
kinase-3 (GSK3), PAR1 or SAD, lKb1 and aPKC), adap-
tors (for example, collapsin response mediator protein-2 
(CRMP2)) and MAPs (tau, adenomatous polyposis  
coli (APC) and MAP1b)75,76. However, it is still unclear 
which of these factors are involved in the initial stabiliza-
tion of microtubules in the axon and how they might 
be restricted to the presumptive axon. One possibility 
is that the centrosome might enhance the delivery of 
one or more of these factors to the presumptive axon, 
although the role of centrosome position in axonal speci-
fication is controversial81,82. Alternatively, localized actin 
destabilization, which can stimulate axon outgrowth83,84, 
might be involved.

The processes affected by enhanced microtubule 
stabilization in axons are not clear. There is a precedent 
for enhanced delivery of membrane cargoes to the axon 
through kinesin-dependent transport, and even for cer-
tain membrane enzymes to contribute to axonal fate85,86. 
A more unexpected cargo is the PAR3 polarity protein, 
which binds directly to kinesin-3 (KIF3A)87. PAR3, 
PAR6 and aPKC are required for axon specification in 
hippocampal neurons88,89 (although not in Drosophila 
melanogaster neurons90) and might enhance the forma-
tion of stable microtubules through negative regulation 
of MAP/microtubule affinity-regulating kinase (MARK) 
or the MARK-related kinase PAR1 (hereafter referred 
to as MARK/PAR1)91. MARK/PAR1 can destabilize 
microtubules by phosphorylating MAPs92. Microtubule 
stabilization directly affects kinesin-based transport: 
post-translational modifications, such as detyrosination, 
polyglutamylation and acetylation, enhance kinesin-1 
binding to microtubules and contribute to transport 
processes in neurons and fibroblasts93–96. Intriguingly, the 
information for the enhanced transport to axons might 
reside in the kinesin motor domain, because kinesin-1 
heads are sufficient to direct kinesin to the axon97,98. 
Taken together, the interactions described above outline 
a potential positive-feedback loop between microtubule, 
kinesin-based transport and signalling molecules, such as 
PAR3, in the initial symmetry breaking that establishes 
neuronal polarity.

Maintenance of cell polarity
Once established, cell polarity varies greatly in longev-
ity, depending on the cell type. Polarity must be stable 
in cells that require it to maintain their highly differ-
entiated states and function (for example, neurons and 
epithelial cells), whereas stability might be less impor-
tant in neutrophils that chase after tumbling bacteria 
or in yeast cells that are searching for mating partners. 
Instead, the ability to respond sensitively to spatial and 
temporal changes in external stimuli (chemoattractant 

Figure 3 | microtubule-based symmetry breaking in neurons. Images in parts a–c show 
that local and transient activation of taxol stimulates microtubule stabilization in a single 
undifferentiated neurite, which causes axon formation (shown by an arrow). a | A neuron 
just before ultraviolet-mediated photoactivation (for 10–15 minutes) of caged (that is, 
shielded or masked) taxol at the tip of the circled neurite. Scale bar, 20 mm. b | Almost 2 
days later, the neurite treated with taxol has become an axon. Scale bar, 50 mm. c | An 
immunofluorescence image of the neuron in part b showing that an axonal marker 
(dephosphorylated tau; red), but not a dendritic marker (microtubule-associated 
protein-2 (MAP2); green), is present in the axon. Scale bar, 50 mm. d | A schematic summary 
of the result in panels a–c that shows that transient microtubule stabilization by taxol is 
sufficient to establish self-reinforcing microtubule stabilization and axon specification. 
Parts a–c modified, with permission, from Ref. 80  (2008) Rockefeller University Press.
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Endocytic recycling
A process of internalization of 
plasma membrane proteins, 
which are subsequently sorted 
in endosomes and either 
directed to lysosomes for 
destruction or recycled back to 
specific locations on the 
plasma membrane.

SNARE
(soluble N-ethyl-maleimide-
sensitive fusion protein- 
attachment-protein receptor). 
A family of membrane- 
tethered, coiled-coil proteins 
that regulate fusion reactions 
and target specificity in 
exocytosis and other 
membrane trafficking events.

released by bacteria or mating pheromone, respectively) 
might be more important. Although much remains to 
be learnt about the principles that govern the longevity 
of the polarized state, actin contributes to the mainte-
nance of cell polarity in a dynamic manner through its 
endocytic function, whereas microtubules are important  
for long-lasting polarity in large cells.

Maintaining dynamic cell polarity through endocytosis. 
Maintaining a concentration of molecules at a specific 
cortical location is no trivial matter if diffusion can 
occur. In yeast, it is clear that many polarized corti-
cal proteins can diffuse readily along the membrane  
and/or away from the membrane, even after cells have 
achieved an apparently stable polarized concentration 
of these proteins on the cortex39,99–101. As such, a polar-
ized distribution of these proteins must be achieved 
and maintained in a dynamic manner through the con-
tinuous retargeting of ‘escaped’ molecules. Recycling 
of membrane-anchored proteins can be accomplished 
through endocytic recycling, which in yeast occurs at 
cortical actin patches that are assembled by the Arp2/3 
complex and several nPFs102. Polymerization of the 
branched actin network, together with the myosin-I 
motor, drives the invagination and elongation of endo-
cytic membranes and leads to scission of endocytic 
vesicles. In mammalian cells, actin polymerization also 
propels the movement of endosomes102.

The effectiveness of endocytosis in the polariza-
tion of membrane proteins was elegantly shown in an 
experiment in yeast, in which the plasma membrane 
sNARe Sso1, which is normally uniformly distributed 
around the cell, became polarized after the introduc-
tion of an endocytic signal at its cytoplasmic domain100. 
Concentration of membrane-bound Cdc42 at the site of 
polarized growth requires actin39,103, probably through 
its endocytic function37. A mathematical model that 
describes the maintenance of membrane-bound Cdc42, 
based on a mechanism of balancing diffusion with endo-
cytosis and transport, predicted a non-monotonic rela-
tionship between the rate of endocytosis and the degree 
of concentration of membrane proteins104, which sug-
gests that polarization of membrane-anchored proteins 
can be sensitively regulated through endocytosis.

The requirement for endocytosis in cell polarity 
has also been noted in other cell types, such as fission 
yeast105, migrating cells106, asymmetrically dividing 
stem cells107, epithelial cells108–110 and D. melanogaster 
oocytes111,112. Surprisingly, an RnAi screen for genes that  
regulate membrane trafficking in C. elegans found  
that conserved cell polarity regulators, such as CDC-42 
and PAR proteins, are in turn required for efficient endo-
cytosis113. Similarly, in D. melanogaster oocytes, the poste-
rior determinant protein Oskar is an endocytic cargo and 
also stimulates endocytosis, possibly by regulating actin 
dynamics111,112. Such bidirectional interaction between 
cortical regulators and endocytosis suggests a potential 
role for endocytosis in the Turing–Gierer–Meinhardt 
theory, which is often used to explain cell polarity and 
gradient sensing114. This theory assumes the presence 
of a slow diffusing autocatalytic activator and an elusive 

global inhibitor, which is the product of the activator and 
restricts the spreading of the activator. endocytosis, an 
actin-based process that internalizes membrane-bound 
activators (for example, CDC42 and Oskar) and is itself 
stimulated by them, could be a long-sought-after ‘global 
inhibitor’ that is required for cell polarity. Phosphatase 
and tensin homologue (PTen), which dephosphorylates 
phosphatidylinositol-3,4,5-trisphosphate, is another 
candidate global inhibitor in Dictyostelium discoideum 
cells that are undergoing chemotaxis115,116.

Microtubules in T-cell polarity. Whereas microtubule-
directed membrane trafficking is clearly a contributing 
factor to the breaking of symmetry in neurons, a more 
common role for microtubules is to reinforce the initial 
polarity that has been established by the actin cytoskele-
ton, especially in large cells or cells that require long-lived 
polarity. When T cells interact with targets, they form an 
immunological synapse that contains clustered signalling 
molecules and actin filaments, and they reorientate their 
centrosome towards the synapse (fIG. 4). Centrosome 
reorientation occurs during the interaction of T cells 
with antigen-presenting cells, and during the interaction 
of natural killer (nK) cells and cytotoxic T lymphocytes 
(CTls) with their targets, and is required for the effi-
cient lysis of targets bound to nK cells and CTls117. 
engagement of the T-cell receptor leads to signals that 
trigger actin-dependent formation of the immunological 
synapse, followed rapidly by the reorientation of the cen-
trosome to a position near the synapse. Activation of the 
Rho GTPase CDC42 seems to have a key role in initiating 
the reorientation of the centrosome118. During reorien-
tation, microtubules interact laterally with the synapse, 
which results in the active movement of the centrosome 
towards the synapse119. Dynein interacts with adhesion- 
and degranulation-promoting adaptor protein (ADAP), 
a scaffold protein that links T-cell receptor signalling to 
integrin clustering, and both proteins are found in the 
peripheral synapse. This leads to the possibility that 
synapse-associated dynein generates forces on micro-
tubules to pull the centrosome towards the synapse120. 
The localization of the centrosome near the immuno-
logical synapse positions the Golgi apparatus and lytic 
granules near the synapse, to ensure directed secretion 
towards the target cell121.

Microtubules and polarity in migrating cells. In adherent 
migrating cells there are at least two sources of asym-
metry during microtubule organization: centrosome 
orientation and the selective stabilization of a subset of 
microtubules20 (fIG. 4). Centrosome orientation is the 
localization of the centrosome to a position between  
the nucleus and the leading edge, which occurs in diverse 
types of migrating cells, including macrophages, fibro-
blasts, endothelial cells, astrocytes and neurons. A com-
mon set of signalling factors, including CDC42, PAR6, 
aPKC and dynein, regulates centrosome orientation122–124. 
However, diverse CDC42 effectors have been impli-
cated in centrosome orientation, including IQ motif-
containing GTPase-activating protein-1 (IQGAP1)125, 
myotonic dystrophy kinase-related CDC42-binding 
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kinase (MRCK)126 and mammalian formin diaphanous-1 
(mDia1)127, suggesting that the precise mechanism might 
depend on the cell type or the use of distinct downstream 
pathways. This diversity of effectors in centrosome ori-
entation might also reflect the coordinated requirement 
for both microtubules and actin filaments, as shown by 

studies in fibroblasts126. In these cells, the centrosome 
does not move to its position in front of the nucleus, 
but instead the nucleus moves away from the leading 
edge in an actin- and myosin-dependent fashion. The 
centrosome is maintained at the centre by dynein, which 
is thought to act on microtubules at peripheral sites126.

Figure 4 | Polarization of microtubule arrays in migrating fibroblasts, T cells and differentiating neurons.  
a | An immunofluorescence image showing centrosome orientation in NIH3T3 fibroblasts that are migrating into an in vitro 
wound. The centrosomal marker pericentrin is shown in red, microtubules are shown in green and 4′,6-diamidino-2- 
phenylindole (DAPI)-stained nuclei are shown in blue. b | Immunofluorescence image showing the polarized formation of 
stabilized microtubules in an NIH3T3 fibroblast that is migrating into an in vitro wound. Tyrosinated tubulin, a marker of 
bulk and dynamic microtubules, is shown in red, and detyrosinated tubulin, a post-translationally modified form of tubulin 
that accumulates in stable microtubules, is shown in yellow. Note that only a subset of the microtubule array is stabilized 
and that these stable microtubules are preferentially directed towards the leading edge. c | The diagrams show that 
centrosomes orientate towards the leading edge in migrating cells, towards sites of target interaction in T cells and 
possibly towards the presumptive axon in neurons. Note that the nucleus moves to orientate the centrosome in 
fibroblasts, whereas the centrosome moves to become orientated in T cells. It is not known whether the centrosome 
moves towards the presumptive site of the axon in neurons. The diagrams also show the selective formation of stabilized 
microtubules in the leading edge of migrating cells and in the presumptive axon of neurons (stable microtubules are 
shown in red and dynamic microtubules are shown in green). In fibroblasts, stable microtubules initially form de novo in the 
leading edge, whereas it is unclear how stabilization arises in one of the undifferentiated neurites in neurons. Neurons  
are known to possess a self-reinforcing mechanism to continually generate new stable microtubules as the axon grows.  
It is not known if fibroblasts share such a self-reinforcing mechanism. Scale bars, 10 mm. Images in parts a and b courtesy of 
A. F. Palazzo, Harvard University, Massachusetts, USA, and G.G.G. 
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Focal adhesion
A plaque-like cellular structure 
that links the extracellular 
matrix on the outside of the 
cell to the actin cytoskeleton 
inside the cell through integrin 
receptors and associated 
proteins.

Adherens junction
An adhesive structure that 
connects adjacent cells 
through cadherins and other 
membrane proteins and is 
associated with cortical actin 
filaments.

Microtubule arrays in migrating cells are also polar-
ized by the formation of a subset of persistent stable 
microtubules near the leading edge that accumulate post-
translational modifications of tubulin128. Centrosome 
polarization and the selective stabilization of microtubules 
occur concurrently in fibroblasts, although each process 
is independently regulated123. In fibroblasts, embryonic 
endodermal cells and glial cells, the formation of the sta-
bilized microtubules is regulated by Rho GTPase and its 
effector mDia1 (Refs 127,129–131). The Rho and mDia1 
pathway generates stabilized microtubules in fibroblasts 
by capping microtubule plus ends, as shown by the lack of 
tubulin subunit addition or loss from the ends of the stabi-
lized microtubules131,132. mDia1 is likely to be a key player 
in the capping of microtubules, as the related protein, 
mDia2, directly stabilizes microtubule ends in vitro133. The 
restricted formation of stable microtubules near the lead-
ing edge is due to integrin engagement and focal adhesion 
kinase signalling, which limit the ability of active Rho to 
activate mDia1 only near the leading edge134. A number 
of +TIPs have been implicated in Rho–mDia1-mediated 
microtubule stabilization, including eb1 and APC in 
fibroblasts and actin crosslinking family protein-7 (ACF7; 
also known as microtubule–actin crosslinking factor 
(MACF)) in endodermal cells130,135. Another type of +TIP,  
the cytoplasmic linker protein (ClIP)-associating pro-
teins (ClASPs), also contributes to the formation of 
stabilized microtubules in fibroblasts136. ClASPs interact 
with the membrane protein ll5β, and this contributes  
to microtubule capture at cortical sites137. ClASPs seem to  
be regulated by Rac, GSK3β and phosphoinositide 
3-kinase (PI3K), rather than by Rho136,138. Additional 
studies are needed to determine whether the diversity 
of +TIPs involved in microtubule stabilization reflects a 
single, but complex mechanism, or diverse mechanisms, 
each of which can be activated to achieve microtubule 
stabilization.

Centrosome polarization and microtubule stabiliza-
tion are thought to contribute to polarized delivery of 
membrane precursors from biosynthetic and endocytic 
recycling pathways. The Golgi apparatus and endocytic 
recycling compartment are localized near the centrosome 
and become polarized towards the leading edge as a result 
of centrosome polarization. The polarized orientations of 
these organelles might direct the delivery of membrane 
vesicles to the leading edge through kinesin-dependent 
transport. As described above, certain kinesins might 
preferentially use stable, post-translationally modified 
microtubules, and this would also direct delivery to the 
leading edge. Model biosynthetic cargoes, such as the viral 
VSVG protein, preferentially undergo exocytosis near the 
leading edge and initially accumulate at the leading-edge 
membrane before rapidly diffusing139,140. biased exocytosis 
and accumulation near the leading edge are randomized 
by treatments that break down microtubules.

Microtubules in the maintenance of epithelial polarity. 
Following initiation of epithelial polarity, microtubules 
undergo a dramatic rearrangement from a radial centro-
somal array to a non-centrosomal array. In columnar 
epithelia, non-centrosomal microtubules become aligned 

along the apical–basal axis, predominantly with minus 
ends at the apical pole and plus ends at the basal pole141. 
There are also arrays of short microtubules of mixed 
polarity at both apical and basal surfaces. Formation of 
epithelial (e)-cadherin adherens junctions triggers the 
form ation of non-centrosomal microtubules and an over-
all increase in epithelial microtubule stability142. A recent 
study in D. melanogaster embryos showed that aPKC is 
involved in generating the non-centrosomal arrays in 
epithelia, by allowing the release of microtubules from 
the centrosome143. eb1 and APC contribute to the basal 
microtubule network, but little else is known about how 
these arrays are formed and maintained144.

The basolateral and apical membrane domains of 
epithelial cells exhibit a distinct composition of proteins, 
and studies with viral membrane proteins have clearly 
shown that proteins destined for these membranes take 
distinct routes during intracellular targeting145. There is 
strong evidence that proteins bound for the apical domain 
are trafficked by microtubules. nocodazole breakdown 
of microtubules leads to nonpolarized accumulation of 
apical proteins in both apical and basolateral domains. 
This might reflect the redistribution of the normally 
apical SnARe protein syntaxin-4 to basolateral sites in 
the absence of microtubules146. In addition, several kines-
ins have been shown to be specifically involved in the  
trafficking of apical proteins from the Golgi to the apical 
membrane147,148.

In contrast to apical proteins, microtubules do not 
seem to be required for delivery of basolateral proteins. 
This result is surprising given the highly polarized array 
of microtubules that extends from the apical region in 
which the Golgi is localized, towards the basal membrane 
of epithelial cells. It has been suggested that the normal 
basolateral route might be overridden by nocodazole 
treatment, which disperses the apically situated Golgi to 
sites near the basolateral membrane145. If kinesins can be 
implicated in basolateral trafficking, it will reinvigorate  
the idea that there is a microtubule-dependent route  
to the basolateral membrane.

Microtubule–actin filament crosstalk
For microtubules to build and stabilize the polarity that 
is initiated by actin, the two cytoskeletal systems must 
be coordinated through crosstalk. This crosstalk occurs 
in both directions, with actin contributing to the initial 
polarization of microtubule arrays and with the polarized 
microtubule arrays reinforcing the initial asymmetry in 
the actin cytoskeleton. As noted above, a molecular 
mechanism for the microtubule-dependent delivery of 
actin regulatory factors has been established in S. pombe. 
below we discuss studies in migrating cells in which there 
is abundant bidirectional crosstalk between actin and 
microtubules.

early studies on fibroblasts showed that breakdown 
of microtubules with microtubule antagonists collapsed 
the front–back polarity of migrating cells149,150, and more 
recent studies have confirmed this result for rapidly mov-
ing neutrophils undergoing chemotaxis151. Two mechan-
isms have been invoked to explain the contribution of 
microtubules to front–back polarity. In neutrophils, 
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microtubule disruption causes the Rho-mediated con-
tractility in the tail to spread, abrogating the ability of the 
cell to establish protrusive activity at its leading edge151. 
The molecular basis for this might involve the ability 
of microtubules to regulate Rho GTPases, which con-
trol the protrusive actin in the front and the contractile 
actin in the back (see above). Microtubule disruption by 
no codazole or colchicine activates Rho globally, with a 
concomitant increase in contractility152,153. Microtubules 
bind to one of the Rho guanine nucleotide-exchange fac-
tors (GeFs), RhoGeF H1, that are involved in activating 
Rho. Following breakdown of microtubules, the exchange 
activity of RhoGeF H1 is increased, which leads to 
increased levels of active Rho154. A greater understanding 
is required of the endogenous factors that release RhoGeF 
H1 from microtubules and allow its activation.

Microtubules can also affect actin in migrating cells by 
acting on focal adhesions. Focal adhesions are sites of clus-
tered integrins and associated molecules that are linked to 
actin stress fibres and provide traction for cell migration. 
Imaging studies have shown that dynamic microtubules 
contact focal adhesions and, in doing so, trigger the dis-
assembly of focal adhesions and their associated actin 
stress fibres155,156. The disassembly process that is trig-
gered by microtubules involves endocytosis of integrins. 
The canonical endocytic protein dynamin is clustered 
at disassembling focal adhesions and is required for 
microtubule-induced focal adhesion disassembly157. This 
result suggests that microtubules might deliver factors that 
trigger the endocytosis of focal adhesion components. As 
the disassembly of mature focal adhesions occurs prim-
arily in the middle and tail of migrating cells, this con-
tributes to a polarization of focal adhesions with assembly 
predominant in the front and disassembly in the rear.  
The targeting of focal adhesions is an example of the con-
tribution of dynamic microtubules to cell polarization and 
might explain the observation that low concentrations 
of microtubule antagonists that dampen microtubule 
dynamics reduce the speed of migrating cells158.

The actin cytoskeleton contributes to the assembly 
of polarized microtubule arrays in migrating cells in a 
number of ways. As mentioned above, polarization of 
the centrosome in fibroblasts involves the collabora-
tion of actin-dependent movement of the nucleus and 
microtubule-dependent centring of the centrosome. 
Another example is the targeting of focal adhesions by 
microtubules, although, unlike centrosome polarization, 

the effects of this are local rather than global. Although 
microtubules usually grow straight owing to constraints 
imposed by the microtubule lattice, imaging studies have 
shown that microtubules bend towards focal adhesions 
when in their vicinity156. Stress fibres are likely to guide the 
microtubule to the focal adhesion, although it is not clear 
whether this involves a directed molecular mechanism or 
a physical one. A type V myosin (myosin-Va) can interact 
with the +TIP eb1 through the adaptor protein melano-
philin, and this might guide microtubules to the barbed 
ends of actin filaments that are associated with focal adhe-
sion components159. Indeed, earlier work in budding yeast 
showed that a similar mechanism, which involves the 
eb1 orthologue (bim1) and myosin-V (Myo2), directed 
microtubules towards the bud to move the nucleus and 
orientate the spindle along the mother–bud axis160. As 
actin arrays are generated at the membrane during many 
symmetry-breaking processes, this might be a widespread 
crosstalk mechanism that enhances microtubule capture 
during cell polarization.

Concluding remarks
The examples discussed above include cells of various 
sizes and polarized cell states that last from minutes (for 
example, yeast and neutrophils) to days or even years  
(for example, epithelial cells and neurons). These different 
cell types rely on actin and microtubules to polarize to 
different degrees and in different ways, but some general 
themes have begun to emerge. Actin seems to have a key 
role in the initial symmetry-breaking process and ena-
bles a rapid response to stimuli in cells of all sizes, with 
the possible exception of neurons, in which symmetry 
breaking is driven by a microtubule-based mechanism. 
This role might stem from the versatility in the assembly 
and organization of actin filaments, especially at the cell 
cortex, and from the many ways by which actin medi-
ates the transport of cytosolic and cortical components. 
Microtubules, however, build on and stabilize the initial 
asymmetry that is created by actin-based forces. This 
function requires transport along microtubules that can 
be orientated by positioning the centrosome and/or by 
stabilizing and adding post-translational modifications 
to a subset of microtubules. The contributions of micro-
tubules to cell polarization seem to increase with cell size 
and with the longevity of the polarized state. Some of these 
generalizations might not last, however, as the field has 
just begun to ‘break’ the secretive shell of cell polarity.
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