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Many avenues of drug discovery have long been driven
by the concept of the cell-surface receptor as a selective
target for chemotherapeutic agents, an idea that was
first introduced by Paul Ehrlich just over a century ago1.
Early impetus also came from John N. Langley’s2

proposal that receptors could receive extracellular
chemical signals and transmit them to the cell, and
that these extracellular signals could be mimicked or
antagonized by specific pharmacological agents. Soon
after, pharmacological characterization of cell-surface
receptors led to an explosion in the number and types
of drug available as medicines3. Today, drugs that tar-
get cell-surface receptors represent the largest propor-
tion of medicines on the world market, with most of
them mediating their therapeutic effects by acting at
G-protein-coupled receptors (GPCRs). With the recent
draft release of the human genome, the pre-eminence
of cell-surface receptors as drug targets seems indis-
putable. Indeed, it is estimated that current medicinal
agents that target GPCRs represent a knowledge base of
only ∼200 protein targets; a further 400 such gene
products are predicted in the human genome, and this
does not include splice variants. So, receptor-based drug
discovery should continue to provide many more viable
drug targets well into the new millennium.

The main principle underlying this drug discovery
process has invariably been the optimization of lead

molecules towards the classic agonist binding site on the
receptor as a means for obtaining selectivity of action.
Throughout this review, this site will be referred to as
the ORTHOSTERIC SITE. Designing drugs to target orthosteric
sites seems logical, given that the requisite high degree
of complementarity between the endogenous hormone
or neurotransmitter (agonist), on the one hand, and its
binding pocket, on the other, ensures some specificity in
activity. This principle also extends to drugs that mimic
or inhibit the effects of the endogenous agonist through
competitive interactions; the characteristic feature is
that all ligands have spatial overlap for a common topo-
graphical domain on the receptor. In turn, this has led
to the identification and classification of most receptor-
targeting drugs as being agonists, neutral (competitive)
antagonists or inverse agonists4, the latter being defined
as compounds that inhibit constitutive — that is,
agonist-independent — receptor activity. However,
recent developments in the field of cell-surface recep-
tors, particularly GPCRs, highlight the fact that novel
receptor-selective drugs need not be defined by the
chemical space that encompasses traditional orthosteric
ligands. From approximately the middle of the last
decade, functional screening assays began to overtake
radioligand binding assays as the high-throughput
method of choice, and this has increased the variety of
the biologically active compounds that are detected.
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The endogenous agonist
binding site on a receptor. This
domain is also recognized by
classic competitive antagonists
and inverse agonists.
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ALLOSTERIC SITE

A modulatory binding site on a
receptor that is topographically
distinct from the agonist
binding site.

ALLOSTERIC INTERACTION

An interaction between two
topographically distinct
binding sites on the same
receptor complex.

Whereas previously, a ‘hit’ would usually have been iden-
tified when there was an alteration in the binding of a
radiolabelled tracer ligand in the presence of a test ligand,
compounds are now being discovered that can modify
receptor function even if they exert minimal effects on
radioligand binding. The converse situation is also true;
there are compounds that can exert a profound effect on
the binding of some orthosteric ligands and have no
effect on others, all at the same receptor. A likely mecha-
nism for such effects has been well established in studies
on enzymes and ligand-gated ion channels (LGICs), but
has not been widely considered for ligands that act at
GPCRs; namely, the phenomenon of allosterism.

Allosteric ligands interact with binding sites on the
receptor molecule that are topographically distinct from
the classic orthosteric site. Hence, the structural features
that determine the binding of orthosteric agonists, com-
petitive antagonists and inverse agonists are different
from those of ligands that bind to ALLOSTERIC SITES.
Allosteric drugs are able to modulate receptor activity
through conformational changes in the receptor protein
that are transmitted from the allosteric site to the
orthosteric site and/or directly to effector coupling sites.
As already shown for some LGICs, allosteric modulators
have several advantages over orthosteric ligands as
potential therapeutic agents (see below), and evidence is
now emerging that many GPCRs also have allosteric
binding sites. These sites are therefore attractive drug
targets, and the drug discovery process now has the
capability and, importantly, the capacity, to screen for
allosteric modulators in addition to orthosteric ligands.
This review provides a brief discussion of allosteric sites
on GPCRs and LGICs, the advantages of allosteric mod-
ulators as therapeutic agents, and the approaches that
are required to successfully detect and quantify
ALLOSTERIC INTERACTIONS in drug discovery programmes.

A model of allosteric interactions
Standard orthosteric drug–receptor theory, which forms
the basis for the quantitative comparison of the drug
affinity values that are derived in most drug discovery
programmes, is based on the law of mass action and
some simplifying assumptions5. In essence, orthosteric
(that is, competitive) interactions are characterized by
mutually exclusive binding between different ligands for
a common site on the receptor. The standard model for
this interaction is shown in FIG. 1a, together with a simu-
lation that depicts the classic behaviour predicted by the
model for the effect of increasing the concentration of
an orthosteric ligand, B, on the occupancy of another
orthosteric ligand, A. In this model, the quantitative
correspondence between ligand concentration and
receptor occupancy is adequately characterized by a
single ligand–receptor affinity value, which is expressed
as an equilibrium association constant (for example, K

a

and K
b

in FIG. 1), or its reciprocal, the equilibrium disso-
ciation constant. By contrast, allosteric models are not as
simple because they must incorporate the ability of the
receptor to present different binding sites to different
ligands. At this point, two important distinctions are
required. For the purpose of this review, an allosteric
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Figure 1 | Models of orthosteric and allosteric binding.
a | Orthosteric competition. Ligands A and B compete for
binding to the same site on the receptor, R, according to their
relative concentrations and affinities, the latter are denoted by the
equilibrium association constants, Ka and Kb, respectively. Also
shown are simulations that are based on the model for the effects
of B on the occupancy of A. Competitive antagonism predicts
progressive dextral displacement of the occupancy of one
orthosteric ligand in the presence of increasing concentrations of
another. b | The ternary complex model (TCM) of allosteric
interaction. In this model, the allosteric modulator, B, binds to a
site that is topographically distinct from the orthosteric site that is
used by ligand A. This modifies the orthosteric ligand affinity to a
limit that is determined by the cooperativity factor, α, which
characterizes the strength of the interaction between allosteric
and orthosteric sites. The simulations show the effects of B on 
A when ligand affinity is either enhanced (α = 10) or diminished 
(α = 0.1) by a factor of 10. Note the limit in the predicted
occupancy shifts for ligand A as the concentration of modulator
B is progressively increased; irrespective of the concentration of
the modulator, the dissociation constant of A cannot exceed
1/αKa. [A], concentration of A; [B], concentration of B.
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can occur in the absence of ligand due to random
thermal fluctuations6–8. The distinction between these
two terms is necessary because the concepts that they
embody have been used to derive different receptor
models that have each been called ‘allosteric’ (BOX 1),
leading to some confusion within the field9.

interaction is defined as an interaction that occurs
between two (or more) topographically distinct binding
sites on the same receptor complex, whereas an
ALLOSTERIC TRANSITION is defined as the global isomeriza-
tion of a receptor protein from one conformation to
another; this isomerization can be ligand driven, or it

ALLOSTERIC TRANSITION

The isomerization of a receptor
protein between multiple
conformational states.

Box 1 | Historical development of allosteric receptor models

The term ‘allosteric’, from the Greek meaning ‘other site’,
was introduced in a seminal series of enzymology papers
by Monod and colleagues63–65, who identified several
characteristics that are associated with classic allosteric
proteins, including: an oligomeric structure; multiple
ligand binding sites; multiple conformational equilibria
in the absence of ligand; and the stabilization of specific
protein conformations by ligands. Interestingly, these
characteristics were already known to be associated with
ligand-gated ion channels (LGICs), and so the first
allosteric receptor models — that is, those that dealt
explicitly with receptor isomerization between different
conformational states66,67 — actually pre-dated the
allosteric enzyme models of Monod and colleagues.
An important property of these models is the prediction
of receptor activity in the absence of ligand as a con-
sequence of the isomerization process; that is, constitutive
receptor activity68–71. These models are now more
commonly referred to as ‘two-state’or ‘multi-state’models.

By contrast, the study of G-protein-coupled receptor
(GPCR) behaviour remained largely operational until
the last two decades of the twentieth century because of
the relative lack of detailed tools with which to analyse
drug actions at these receptors at the molecular level.
However, the proposal that receptors could translocate
within the cell membrane and associate with other
membrane-bound proteins72 led to the second major
development in allosteric receptor theory, the ternary
complex model (TCM) of De Lean and colleagues73. The earliest applications of the TCM were to the allosteric
interaction between agonist binding and G-protein coupling73–75, but the model was equally applicable to mechanisms
that involved the simultaneous binding of two ligands to one receptor13,76, a phenomenon that was first shown for the
muscarinic-acetylcholine family of receptors76–78, but was subsequently shown for other GPCRs (TABLE 1). One commonly
observed difference between the TCM as a model for receptor–G-protein interactions, on the one hand, and for
receptor–modulator interactions, on the other, is that the former situation can lead to shallow binding curves if
G-protein amount is limiting, whereas the latter does not, because allosteric modulators are invariably present in vast
excess relative to the concentration of receptor. The mechanisms are otherwise, however, formally identical.

Finally, the conclusive demonstration of constitutive receptor activity at a GPCR79 led to the realization that both the
TCM and the multi-state models of receptor action reflect two sides of the same coin. So, current allosteric receptor
models for both LGICs and GPCRs have combined features of both the TCM and multi-state models10,11,80,81 to
accommodate allosteric modulator effects on both orthosteric ligand affinity and the ability of the receptor to isomerize
between active and inactive states.An allosteric two-state model10,11 is shown in panel a for the simplest scenario of two
different receptor conformations, one active (R*) and one inactive (R), each containing two topographically distinct
binding sites. This model therefore describes allosteric modulator effects on efficacy in addition to affinity. Such
extensions of the simpler allosteric receptor models are required to accommodate newer data that are accumulating from
functional receptor assays, such as the effects of the allosteric enhancer CGP7930 (2,6-di-tert-butyl-4-(3-hydroxy-2,2-
dimethyl-ropyl)-phenol) on the agonist-mediated signalling of the GABA

B
-receptor (γ-aminobutyric acid B  receptor)

heterodimer. Panel b shows the effects of CGP7930 on GABA-mediated [35S]GTPγS binding in Chinese hamster ovary
(CHO) cell membranes that are expressing the human GABA

B
-receptor heterodimer. Note that the modulator causes not

only an increase in the potency of the endogenous agonist, GABA, but also a concentration-dependent enhancement of
the maximal receptor-mediated response — a clear example of allosteric modulation of ligand–receptor efficacy. This
finding cannot be reconciled with the simple TCM. c.p.m, counts per minute; [CGP7930], concentration of CGP1930
(µM); [GABA], concentration of GABA (M); K

a
, equilibrium association constant of A; K

b
, equilibrium association

constant of B; L, receptor isomerization constant; α, β, δ, γ, ligand–receptor cooperativity factors. Redrawn with
permission from REF. 43 © (2001) American Society for Pharmacology and Experimental Therapeutics (ASPET).
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Shown in FIG. 1b is the ternary complex model
(TCM), the simplest mechanism that describes an
allosteric interaction between two ligands, A and B, each
binding concomitantly to topographically distinct
binding sites on the same receptor protein. In this model,
ligand A binds to the orthosteric site with an affinity of
K

a
, whereas ligand B binds to an allosteric site with an

affinity of K
b
. The symbol α is often termed the ‘coopera-

tivity factor’, and quantifies the magnitude by which the
affinity of one ligand is changed by the other ligand
when both are bound to the receptor to form the ternary
complex, ARB. The ability of an allosteric modulator to
cause such a change in orthosteric ligand affinity relates
to the perturbation that the modulator induces in recep-
tor conformation. As the equilibrium binding of any

Mechanistically, the two terms reflect different aspects
of the same phenomenon — namely, the ability of a
protein to adopt multiple conformations that differ
in their biological binding/signalling properties, and
the ability of ligands to selectively enrich subsets of
these conformations from within the global confor-
mational ensemble that is available to the protein.
Although receptor models have been developed to
encompass both of these properties (BOX 1), the starting
point for most drug discovery programmes aimed at
detecting small-molecule modulators acting through
extracellular ligand binding sites that are distinct
from the orthosteric site remains a relatively simple
model that explicitly incorporates cross-interactions
between different sites.

Table 1 | Selected allosteric modulators of cell-surface receptors

Receptor Allosteric modulator(s) References

Ligand-gated ion channels

GABAA receptor Benzodiazepines; β-carbolines; barbiturates; steroids   24,25,83–89
(allopreganolone, pregnan-2-one); picrotoxin; ethanol; 
general anaesthetics

GABAC receptor Picrotoxin, zinc 83

Glycine receptor Picrotoxin; zinc; glutathione 83

Nicotinic acetylcholine receptors Quinacrine; phencyclidine; local anaesthetics; various alkaloids  21,23,90–97
(physostigmine, gallanthamine, codeine); 5-HT; ivermectin

NMDA receptors Glycine; polyamines (spermine, spermidine); ifenprodil; ethanol; 98–102
zinc; histamine; arachidonic acid

Purine P2X receptor d-tubocurarine; cibacron blue 103

G-protein-coupled receptors

Adenosine A1 PD81723; PD117975 60,104–107

Adenosine A2A Amilorides 42

Adenosine A3 VU5455; VU8504 108

α1-Adrenoceptor Amilorides; benzodiazepines 109,110

α2A,α2B-Adrenoceptor Amiloride 16,59,111,112

α2D-Adrenoceptor Agmatine 113

β2-Adrenoceptor Zinc 114

Calcium-sensing receptor NPS467; NPS568; L-amino acids 115,116

Chemokine* CXCR3 IP-10; I-TAC 117

Chemokine* CCR5, CXCR4 Trichosanthin 118

Chemokine* CCR1, CCR3 UCB35625 119

Dopamine D1 Zinc 120

Dopamine D2 Amilorides; zinc 121,122

Endothelin ETA Aspirin; sodium salicylate 123,124

GABAB CGP7930; CGP13501 43

Glutamate mGlu1 CPCCOEt; Ro67-7476; Ro01-6128; BAY36-7620 38,44,50

Glutamate mGlu5 MPEP 37,125

Muscarinic M1–M5 Gallamine; alcuronium; brucine 14,76,78,126

Neurokinin NK1 Heparin 127

Purine P2Y1 2,2′-pyridylsatogen tosylate 128,129

Serotonin 5-HT1B/1D 5-HT moduline 130,131

Serotonin 5-HT2A Oleamide 51

Serotonin 5-HT7 Oleamide 51,52

* Chemokine receptors are named according to the number and spacing of conserved cysteines: CC, Cys-Cys; CXC, Cys-Xaa-Cys.
CPCCOEt, 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester; GABA, γ-aminobutyric acid; 
5-HT, 5-hydroxytryptamine; NMDA, N-methyl D-aspartate; mGlu, metabotropic glutamate receptor; MPEP, 2-methyl-6-(phenylethynyl)-pyridine.
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In these equations, K
A

and K
B

denote the equilibrium
dissociation constants of A and B (that is, 1/K

a
and 1/K

b

from the model in FIG. 1) respectively, at the free recep-
tor. If the interaction between A and B is positively
COOPERATIVE (α > 1), then K

App
< K

A
, and the binding

curve of ligand A at the modulator-occupied receptor
will be shifted to the left relative to the binding curve of A
at the free receptor. By contrast, negative cooperativity
between A and B (α < 1) will cause a rightward displace-
ment of the binding curve for A (that is, K

App 
> K

A
). FIG. 1b

illustrates these relationships for the binding of an
orthosteric ligand in the presence of increasing concen-
trations of an allosteric modulator with an α-value of
either 0.1 (negative cooperativity) or 10 (positive cooper-
ativity). This figure also illustrates an important aspect of
allosteric interactions — namely, that these types of
interaction approach a limit, the extent of which is
governed by the magnitude of α. The closer the value of
α is to 1, the more readily the limit is approached with
increasing concentrations of modulator. This property of
a limit to an allosteric interaction is particularly impor-
tant with respect to the therapeutic advantages that are
offered by allosteric modulators, as well as the types of
assay that can be optimized to screen for this behaviour.

Advantages of allosteric modulators
There are at least three general advantages to using
allosteric modulators for producing or modifying
physiological responses in comparison to standard
orthosteric drugs. The first advantage is that the effect of
allosteric modulators is saturable; once the allosteric
sites are completely occupied, no further allosteric effect
is observed19. By contrast, classic orthosteric (competi-
tive) antagonism can theoretically be infinite, as it
depends only on the relative concentrations of the com-
peting species. Saturability of allosteric effects applies to
both positive and negative allosteric modulators, and is
therefore useful for drug candidates that are aimed at
either enhancing or antagonizing receptor-mediated
effects; the modulators can be given in relatively high
doses without fear of overstimulating or overinhibiting
the system. So, there is a ‘ceiling’ to the effects of an
allosteric modulator that is retained even with excessive
doses. Indeed, safety in overdosage is an acknowledged
clinical advantage of the benzodiazepines as a class of
positive GABA

A
-receptor (γ-aminobutyric acid A recep-

tor) modulators, compared with other ligands that act
directly at the GABA binding site or the ion channel itself.

A second advantage of allosteric ligands, especially
positive modulators, relates to their ability to selectively
tune responses only in tissues in which the endogenous
agonist exerts its physiological effects20. Normal neuro-
humoral signalling involves the pulsatile release of
hormones and variations in the activity of nerves that
release neurotransmitters; an allosteric modulator
would be expected to exert its effects only when endo-
genous agonist is present. If nerve activity is reduced,
the modulator would have minimal effects, despite its
continued presence in the receptor compartment. This
is not possible with orthosteric agonists, which will
continuously modify receptor function as long as they

ligand–receptor complex depends on the ratio of ligand
association and dissociation rates5, then the simplest
mechanism that underlies allosteric interactions in the
TCM is an alteration in orthosteric ligand association
and/or dissociation. This aspect of allosteric interactions
forms the basis of specific assays that are designed to
detect and/or validate allosteric modulators (see below).

It should be noted that another important property
of allosteric interactions is that they are reciprocal in
nature; whatever A does to B, B does to A. In contrast to
orthosteric interactions, therefore, allosteric interactions
of this type are characterized by two affinity constants,
together with the cooperativity factor, the latter defining
the degree of allosteric interaction. In the TCM shown in
FIG. 1b, values of α > 1 result in increased affinity (positive
cooperativity), whereas values of α < 1 denote a decrease
in affinity (negative cooperativity). For very high degrees
of negative cooperativity (α « 1), the interaction might
seem indistinguishable from competitive (mutually
exclusive) binding. Interestingly, it is also possible for the
affinity of either ligand to remain unaltered at the
occupied receptor; α is then equal to 1, and the interac-
tion is characterized by ‘neutral’ cooperativity. Another
property of the TCM is that the magnitude and direction
of the allosteric effect between the two sites (that is, the
α-value) depends on the chemical nature of A and B;
different pairs of ligands that interact at the same orthos-
teric and allosteric sites of a given receptor can still have
markedly different types of cooperativity. This is an
important consideration for drug discovery programmes
that target allosteric sites (see below).

In practice, the TCM is also the model with the mini-
mum number of parameters that are required to define
allosteric drug properties that can accurately be deter-
mined experimentally. Although more recent receptor
models have been developed to more faithfully reflect the
full theoretical spectrum of allosteric effects10,11, they are
defined by more parameters than can routinely be deter-
mined in assays that are designed predominantly for
drug-screening purposes. By contrast, the TCM has
already proved to be remarkably robust in quantifying
the behaviour of several allosteric modulators at both
LGICs and GPCRs12–16. TABLE 1 lists a range of ligands
that have been shown to act at allosteric sites that are
distinct from those that are recognized by the endo-
genous agonist, on both LGICs and GPCRs. Although
the list of receptors might seem rather diverse, allosteric
interactions share several common features that are
related to the consequences of cooperativity. Specifically,
in the TCM, the effects of allosteric modulators on the
fractional receptor occupancy by the orthosteric ligand A
(ρ

A
) can be described by the following expression13,14,17,18:

with K
App

being given by EQN 2:

COOPERATIVE BINDING

The binding of two or more
molecules of the same ligand to
a receptor complex. Sometimes
used in a less strict sense to
describe the concomitant
binding of more than one
molecule of any chemical type
to a receptor complex.

A = ρ [A]
[A] + KApp

(1)

KApp = KA (2)

1 + [B]
KB

1 +   [B]α
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lihood of multiple interacting binding domains is high.
Indeed, the recognition of functional diversity of GABA

A

receptors as a consequence of LGIC subunit composi-
tion has already led to the discovery of a range of selec-
tive allosteric modulators that span a spectrum of pos-
itive to negative effects27,28.

Although recent evidence indicates that GPCRs can
also form oligomeric arrangements18,29,30, most of the
biological properties of these receptors have traditionally
been accommodated in models that treat them as
monomeric proteins. Nevertheless, mutagenesis experi-
ments that have been conducted on some GPCRs31–38

have identified ligand binding domains within the recep-
tor monomer that are unequivocally distinct from those
that comprise the orthosteric binding site, as shown in
FIG. 2b for the M

2
muscarinic acetylcholine receptor.

It can be seen that the allosteric site on the M
2

receptor is
close to the orthosteric site, but at a more extracellular
level33,39. So, receptors that show high sequence homol-
ogy within the orthosteric domain but not in the
allosteric binding domains are another class of candi-
date targets for allosteric modulators, as the likelihood
of subtype selectivity can be enhanced if drug discovery
programmes target receptor allosteric sites.

The second mechanism for receptor subtype select-
ivity of allosteric modulators is related to cooperativity
rather than affinity. It is known that the affinity of a
modulator for its binding site is not correlated with the
degree of cooperativity that exists between orthosteric
and allosteric sites40. Hence, a modulator might have the
same affinity for different subtypes of a receptor, but still
exert a selective effect by having different degrees of
cooperativity at each subtype. The ideal expression of
this phenomenon has been termed ‘absolute subtype
selectivity’41, and is observed when a modulator
remains neutrally cooperative at all receptor subtypes
except the one that is being targeted for therapeutic
purposes. For example, although the allosteric modulator
N-chloromethylbrucine has almost identical affinities
for the allosteric sites on the M

3
and M

4
muscarinic

acetylcholine receptors (pK
A
~4.3), it is positively coop-

erative (α = 3.3) at the M
3

receptor, but effectively
neutrally cooperative (α = 1.03) at the M

4
receptor41.

Given the current bias of most drug discovery pro-
grammes towards orthosteric ligands, the potential
clinical advantages of allosteric modulators that are
outlined above remain to be validated for many drug
targets. However, the success of the benzodiazepines as
positive allosteric modulators of the GABA

A
LGIC

already attests to the therapeutic utility of allosteric
ligands, as well as the degree to which the theoretical
advantages of these ligands can actually be met in
practice. Even more encouraging are some recent
studies that have identified novel ligands from GPCR
drug discovery programmes that do not seem to use
orthosteric mechanisms38,42–44. One important example
is the phenylalkylamine derivatives NPRS467 and
NPRS568, which are positive allosteric modulators of
the calcium-sensing GPCR. Compounds that are
related to these modulators are now in clinical trials
for the treatment of primary hyperparathyroidism45,

are present. So, allosteric modulators can process both
spatial and temporal information gained from the
physiology of the system to produce optimum effect.

The third advantage of allosteric drugs is the
potential for greater receptor subtype selectivity, which
can be achieved by either (or both) of two mecha-
nisms. The first such mechanism relates to the location
of the allosteric site. Data from mutagenesis experi-
ments on both LGICs and GPCRs are now beginning
to reveal amino acids that contribute to binding
domains that are structurally distinct from those that
comprise the orthosteric binding site. There is even
evidence to indicate that endogenously produced ligands
might act at some of these allosteric sites (BOX 2). In the
case of LGICs, this should not be surprising, as these
receptors have several features in common with classic
allosteric enzymes, including an oligomeric quaternary
structure that is invariably associated with multiple topo-
graphically distinct but interacting domains21 that are
targeted by various endogenous and synthetic ligands.
For example, the GABA

A
LGIC, similar to the nicotinic

acetylcholine LGIC, is a pentamer that comprises various
combinations of distinct α-, β-, γ-, δ-, ε-, θ- and ρ-
subunits21–23. The ability of benzodiazepine ligands to
modulate GABA-mediated channel activity relies heavily
on the presence of a γ

2
-subunit to form an allosteric

binding interface with specific α-subunits; GABA
A

pen-
tamers that lack the γ

2
-subunit do not show modulation

by benzodiazepines22,24. Furthermore, depending on the
α-subunit that forms the α–γ interface, selective modu-
lator effects of the benzodiazepines have been noted25.
By contrast, the binding of GABA relies on a domain at
the interface of α- and β-subunits22. These differences
are illustrated schematically in FIG. 2a, which shows the
relationship between amino acids that are thought to con-
tribute to the allosteric benzodiazepine binding site
and the two orthosteric sites for GABA on the α

1
β

2
γ

2

pentamer26. In general, receptors that are oligomeric are
natural drug targets for allosteric modulators, as the like-

Box 2 | Endogenous allosteric modulators

By definition, the orthosteric binding site on a receptor comprises amino acids that form
contacts with the endogenous agonist for that receptor; this site has therefore specifically
evolved to interact with an endogenous hormone or neurotransmitter. By contrast,
allosteric binding sites need not satisfy this criterion, and might simply represent
accessory domains that normally have structural roles. However, as listed in TABLE 1,
some ions, including sodium, calcium and zinc, have been found to modulate the
activities of certain ligand-gated ion channels (LGICs) and G-protein-coupled receptors
through allosteric mechanisms. Other endogenous modulators of cell-surface receptors
include L-amino acids, glycine, amidated lipids such as oleamide, peptides such as 
5-hydroxytryptamine (5-HT) moduline, the eicosanoid arachidonic acid and various
neuroactive steroids. Even classic neurotransmitters, such as 5-HT and histamine, have
been found to modulate the nicotinic acetylcholine and N-methyl D-aspartate (NMDA)
LGICs, respectively (see TABLE 1 for references). Interestingly, one report has found that
human eosinophil major basic protein might have a role in muscarinic M

2
-receptor

dysfunction of the airways by means of an allosteric effect on receptor function82. So,
although allosteric binding sites on receptors are attractive therapeutic targets for
synthetic ligands, some of them can also influence receptor function under normal
physiological, or perhaps pathophysiological, conditions through interaction with
endogenous modulators.
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on receptor–G-protein coupling and/or receptor iso-
merization into an active state. Whereas ‘pure’ effects on
orthosteric ligand affinity will be reflected as changes in
the occupancy of the probes, allosteric effects on lig-
and–receptor efficacy can lead to a dissimilarity in the
detection and classification of the allosteric ligand. For
example, agonist probes of GPCRs predispose the
screen towards detecting ligands that bind to the high-
affinity state of the receptor that is coupled to the 
G protein. By contrast, inverse agonists prefer receptors
in the G-protein-uncoupled, or inactive, state, whereas
neutral antagonists show no discernible bias and so
indiscriminately sample the entire receptor population5.
The presence of an allosteric modulator that selectively
perturbs receptor–G-protein coupling without an effect
on orthosteric site occupancy can therefore have oppo-
site effects on agonist and inverse-agonist probes, while
remaining undetected by neutral-antagonist probes.
Because of the probe specificity of allosteric effects, drug
discovery programmes that are specifically aimed at
allosteric modulators must consider the following two
points: first, if possible, the probe that is used should be
the endogenous orthosteric ligand for the receptor of
interest; and second, if this is not possible, then the
probe might still detect an allosteric interaction, but the
magnitude and direction of that interaction can be
quite different from the situation with the endogenous-
ligand probe.

The second feature that must be considered when
using binding assays to screen for allosteric modula-
tors is the strength of the cooperativity. Although it
represents a therapeutic advantage in many instances,

and could represent the first GPCR allosteric modula-
tors to reach the clinic specifically because of their
allosteric properties.

Detecting allosteric effects
Until recent years, the primary assay for high-throughput
screening in the drug discovery process has been radio-
ligand binding. This assay uses a radiolabelled ‘probe’ to
directly monitor occupancy of the binding site on the
receptor with which the probe interacts, and has been
very successful in screening for orthosteric drugs
because it is relatively efficient, reproducible and highly
scalable towards sampling large compound libraries.
However, the features that make binding assays useful
for detecting orthosteric ligands do not necessarily
apply to the detection of allosteric ligands; although an
allosteric modulator might have a striking effect on
orthosteric ligand binding in some instances, it might
have minimal or no effects in others, because allosteric
phenomena are probe dependent46. This finding might
explain the current paucity of clinically available
allosteric drugs — radioligand binding assays are biased
towards the detection of orthosteric effects.

Even when radioligand binding assays are able to
measure allosteric interactions, the assays might need to
be modified to ensure maximum likelihood of detection.
Although the TCM describes allosteric phenomena in
terms of changes in orthosteric ligand binding affinity,
some allosteric mechanisms can also involve changes in
ligand efficacy rather than direct effects on affinity (BOX 1).
For LGICs, this involves an effect on channel open/shut
states; for a GPCR, the corollary would be a direct effect
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(that is, specific to non-specific binding) of the assay.
When screening for antagonist compounds, it should
also be noted that a failure to cause complete inhibi-
tion of specific orthosteric binding might be a telltale
sign of a negative allosteric modulator. However, com-
plete inhibition of radioligand binding by an antago-
nist need not imply strict competitive binding; it
could be that the test compound is an allosteric mod-
ulator with high negative cooperativity. Sometimes,
this latter property can be confirmed by carrying out
the binding assay using very high concentrations of
radioligand47, although it might often be impractical.
An alternative is to use a different type of binding
assay to validate the allosteric effect.

One useful radioligand-based alternative to equilib-
rium binding assays for detecting and quantifying
allosteric phenomena exploits the fact that allosteric
changes in receptor conformation lead to changes in the
rates of orthosteric ligand association and dissociation.
Indeed, allosteric effects on the binding kinetics of
orthosteric ligands are often more sensitive indicators of

limited degrees of cooperativity also pose a practical
problem for drug discovery because they lead to small
windows of detection of the allosteric effect. An example
is shown in FIG. 3, in which the effects of a weak posi-
tive modulator (α = 4) and a weak negative modulator
(α = 0.25) on the occupancy of an orthosteric ligand
are viewed from the point of view of orthosteric satura-
tion binding assays (centre panel), or the more com-
monly used method of inhibition (or potentiation)
binding assays; that is, monitoring the effects of the
different concentrations of modulator on a fixed con-
centration of orthosteric probe (outer panels). It can
be seen that low levels of radioligand occupancy allow
for the maximum detection window for allosteric
effects — as the concentration of probe is increased,
the saturability of the allosteric phenomenon reduces
the ordinate window and therefore makes it much
more difficult to discern the allosteric effect. In prac-
tice, a trade-off will need to be made between the low-
est possible concentration of radiolabelled probe that
is attainable and the resulting signal-to-noise ratio
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In comparison to radioligand binding, functional
receptor assays have not been used as often in the past as
the primary high-throughput assay of choice in drug
discovery. However, this has now changed owing to the
advent of new and improved technologies, including
reporter systems, yeast and melanophore systems, and
high-throughput, fluorescence-based, intracellular
calcium-detection systems. The obvious advantage of
using assays of receptor function as the primary screen
is that the desired physiological end point — that is, an
alteration of cellular responsiveness — is directly deter-
mined. It is too early at the moment to gauge the full
impact of these technologies on the screening of
allosteric modulators, but it is worth noting that small-
molecule modulators of receptor function are now
being detected in functional assays that might otherwise
have been missed in binding assays. For example, FIG. 4

shows a clear lack of concordance between effects on
receptor function, on the one hand, and receptor binding,
on the other, of the allosteric antagonist 7-hydroxy-
iminocyclopropan[b]chromen-1a-carboxylic acid ethyl
ester (CPCCOEt) at the metabotropic glutamate
receptor 1 (mGlu

1
). Whereas CPCCOEt causes a

marked attenuation of glutamate-mediated signalling
with no significant effect on agonist potency, it fails to
perturb the binding of [3H]glutamate to the orthosteric
site50. The allosteric properties of CPCCOEt would
therefore not have been detected in standard assays of
radioligand binding.

Another advantage of using functional assays to
detect allosteric ligands is the ability of the assay to
provide a sensitive readout for drugs that modify efficacy
in their own right; for example, by directly altering
receptor–G-protein coupling in the absence of orthos-
teric ligand. However, the probe dependence of
allosteric effects can also lead to a problem in func-
tional assays when it comes to validating the receptor
specificity of allosteric agonists. For example, the
endogenous fatty acid oleamide can activate 5-HT

7

receptors (5-hydroxytryptamine receptor 7) that are
transfected into HeLa cells in the absence of the
endogenous agonist 5-HT by interacting at an
allosteric site51,52. However, the receptor specificity of
this effect could not be confirmed by the classic
approach of using a selective receptor antagonist to
block the agonist-mediated response, as the high-
affinity 5-HT

7
antagonist clozapine failed to attenuate

the oleamide effect51.A marked attenuation in signalling
through oleamide was noted, however, in cells that
were not transfected with the 5-HT

7
receptor. So, the

lack of a response in non-transfected cells might be a
prerequisite for identifying allosteric agonists.

It is therefore obvious that both binding and func-
tional assays have specific advantages and disadvantages
when it comes to screening for allosteric modulators of
cell-surface receptors. Overall, however, assays of recep-
tor function are now generally sensitive enough and have
the capacity to match, if not exceed, assays of radioligand
binding in terms of compound sampling volumes. The
choice of a high-throughput functional assay as the
primary screen can be an efficient compromise for drug

allosteric mechanisms than effects on equilibrium
binding properties. For example, neutral cooperativity
(α = 1) might result in unaltered orthosteric binding at
equilibrium, but measurements of orthosteric dissocia-
tion kinetics can still reveal that an allosteric mecha-
nism is operative48. So, drug discovery programmes
that specifically target allosteric modulators should
consider the extra rigour that is provided by secondary
validation assays based on radioligand dissociation
rate measurements14,49.
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Figure 4 | Detection of allosteric effects on orthosteric
ligand function. The effects of the metabotropic glutamate
receptor 1 (mGlu1) allosteric antagonist, 
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One example of an analytical procedure that is
specifically applicable to the routine screening of
allosteric modulators is the determination of ‘affinity
ratios’14. This procedure was developed to detect and
provide semi-quantitative estimates of allosteric cooper-
ativity from equilibrium binding assays, especially in
instances in which an allosteric agent is tested against an
unlabelled orthosteric probe, such as an endogenous
agonist, in the presence of a second, radiolabelled
orthosteric probe, such as a high-affinity antagonist.
These types of combination experiment are often neces-
sary because of the lack of availability of a radiolabelled
version of a particular orthosteric probe (for example,
an endogenous agonist); however, they can yield com-
plex binding curves that are not easy to interpret.
Affinity-ratio methodology offers the advantages of
allowing these types of screening assay with minimal
data points, as well as being graphically versatile and
amenable to a semi-quantitative analysis by simple
visual inspection of the data14,49. In essence, the proce-
dure involves determining the ratio of the apparent
affinities of an orthosteric probe (radiolabelled or
unlabelled) in the absence and presence of a fixed con-
centration of modulator. FIG. 5 illustrates the application
of this approach to the interaction between the allosteric
modulator N-benzylbrucine (NBB) and the orthosteric
radioligand [3H]N-methylscopolamine ([3H]NMS), in
the absence or presence of the unlabelled orthosteric
probe acetylcholine. Although NBB exerts positive
cooperativity with [3H]NMS and negative cooperativity
with acetylcholine, this is not readily evident in the raw
binding data, which only show the changes in [3H]NMS
binding. However, conversion of the data to affinity
ratios clearly shows the effects of NBB on either ligand;
the direction of the change indicates the type of cooper-
ativity and the midpoint of the curves yields an estimate
of the affinity of the allosteric modulator for the probe-
occupied receptor.

The usefulness of radioligand dissociation rate
assays to detect allosteric modulators has already been
mentioned in the preceding section. Radioligand disso-
ciation is an exponential process, and often the rate of
dissociation as a function of time can be described by
the simple mono-exponential relationship below:

where B
t
denotes specific radioligand binding at time

t, B
0

denotes specific radioligand binding at time t = 0,
and k

off
denotes the radioligand dissociation rate con-

stant. In the presence of an allosteric modulator, the
value for k

off
can change, with dissociation either being

enhanced16,59 or retarded57,60,61. If the kinetics of bind-
ing of the allosteric modulator to the allosteric site are
more rapid than those of the orthosteric probe to its
site, then the radioligand dissociation kinetic curves
will remain mono-exponential for all concentrations
of modulator14. Theoretically, this means that the
determination of radioligand dissociation at two time
points (that is, B

0
and one other time) is sufficient to

estimate the apparent k
off

value, both in the absence

discovery programmes that target one type of com-
pound (for example, agonist, antagonist or modulator),
while still allowing for the maximal detection of
allosteric effects. The obvious advantages of functional
assays are a measurable physiological end point, the
ability to detect inverse agonists and, importantly, the
ability to detect allosteric agonists as well as allosteric
enhancers or antagonists that do not affect orthosteric
binding. Potential disadvantages of the functional assays
include a higher endogenous hit rate — that is, the acti-
vation of non-target receptors or non-receptor signalling
mechanisms — and a slightly less sensitive detection
window for antagonist ligands53. However, these disad-
vantages can be offset in many instances by the use of
radioligand binding assays as secondary screens, provided
that the probe dependence of allosteric interactions is
considered in the experimental design.

Quantifying allosteric effects
Once an allosteric effect is detected, there are several
methods available for quantifying the interaction. A
detailed discussion of these methods is beyond the
scope of this review, but they are generally based on the
TCM and its variants as applied to allosteric phenomena.
For example, equilibrium binding data can often be fitted
directly to EQN 1 to derive the relevant affinity and coop-
erativity values that define the interaction13,14,49,54.
Functional data can be analysed in terms of the TCM by
using a variation of the classic null method of
Arunlakshana and Schild55, which is adapted for
allosteric effects13, as well as models that are based on the
analysis of combinations of orthosteric and allosteric
ligands56–58. In general, most of these methods are not
always amenable to data that are generated from routine
screening assays, as they require larger data sets to accu-
rately define model parameters.
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allosteric modulator effects. The effects of the modulator N-benzylbrucine on the binding of
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Bt = B0exp(–kofft) (3)
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