
The TP53 gene has a prominent role in cancer and 
much of human biology. The ‘guardian of the genome’ 
continues to fascinate investigators because of its many 
functions. The p53 tumour suppressor can be induced 
by a range of stresses through transcriptional1,2, post-
transcriptional3–8 and post-translational9 control mech-
anisms. The intrigue caused by this protein has been 
heightened by recent findings that p53 activities also 
occur in human development long before the onset of 
cancer, including during embryo implantation10. Many 
functions have been attributed to p53, including direct 
roles in repair and recombination, association with 
proteins involved in genome stability, and chromatin 
modification11. However, its broadest cellular effect 
is that of a transcription factor (TF)12. In its role as a 
master regulator, the universe of genes subject to p53 
control extends across a diverse group of biological 
activities13 that include DNA metabolism11, apoptosis14, 
cell cycle regulation15, senescence16, energy metabo-
lism17,18, angiogenesis19–22, immune response23, cell dif-
ferentiation, motility and migration24–28 and cell–cell 
communication29. Recent studies have demonstrated 
how p53-dependent activation of microRNA genes 
can participate in the modulation of various biological 
activities30–33. Approximately 50% of all cancers have a 
mutation in p53 that alters transcriptional activity (see 
the International Agency for Cancer Research TP53 
Mutation Database and the TP53 Website). In most of 
the remaining cancers, the functions of the p53 pathway 
are impaired mainly through a reduction in nuclear p53 
levels, resulting in multiple changes in stress responses 
and cellular fate.

As a tumour suppressor, the major p53 functions are 
to regulate growth arrest and apoptosis (see the review 
by Vousden and Prives13), and the balance of these two 
cellular events can determine the fate of individual cells. 
Unlike for other tumour suppressor genes, most TP53 
mutations in tumours are of the missense type and lead 
to single amino acid changes that predominantly affect 
residues in the DNA binding domain of the protein, 
strongly suggesting that targeted sequence-specific DNA 
binding is crucial for the escape of tumours from p53 
suppressor activity. As presented elsewhere in this Focus 
Issue (see the Review by Brosh and Rotter34), p53 mutant 
status in tumours has been linked to adverse prognosis 
in different cancer types, a finding that has stimulated 
the development of various intervention strategies. 
Studies in animal models in which p53 has been con-
stitutively or conditionally altered35–37 demonstrate that 
p53 transcriptional activity is key to tumour suppression. 
Mouse knock-in approaches were used to show that the 
tissue-specific predisposition to cancer and tumour 
onset correlated with the DNA binding and transac-
tivation potentials of p53 mutants in cell systems or 
in vitro38–40. Inherited p53 mutations in humans result 
in the highly penetrant cancer-prone Li-Fraumeni 
syndrome. The variety of clinical manifestations in 
patients with Li-Fraumeni syndrome is related to the 
different abilities of p53 mutant alleles to function as 
sequence-specific transcription factors41,42.

Central to transcriptional regulation by the p53 
tumour suppressor is target sequence recognition. Over 
the past 20 years considerable effort has gone into under-
standing what constitutes a p53 response element (RE), as 
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Abstract | The p53 tumour suppressor is modified through mutation or changes in expression 
in most cancers, leading to the altered regulation of hundreds of genes that are directly 
influenced by this sequence-specific transcription factor. Central to the p53 master 
regulatory network are the target response element (RE) sequences. The extent of p53 
transactivation and transcriptional repression is influenced by many factors, including  
p53 levels, cofactors and the specific RE sequences, all of which contribute to the role that p53 
has in the aetiology of cancer. This Review describes the identification and functionality of 
REs and highlights the inclusion of non-canonical REs that expand the universe of genes and 
regulation mechanisms in the p53 tumour suppressor network.
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well as the conditions and factors that affect p53-mediated 
transcription43,44 (recent reviews include Refs 12,45). 
This information is key for identifying the genes that 
are included in the p53 master regulatory network and 
understanding their potential roles in tumour suppres-
sion and cancer prevention. The depth of genomic influ-
ence of p53 is much larger than originally anticipated 
owing to the ‘expanding universe’ of genes directly tar-
geted by p53. This Review focuses on the identification 
and assessment of the p53 transcriptional functionality 
of potential RE targets; the expansion of the p53 uni-
verse through targeting to non-canonical sequences; cis 
interactions with other master regulators, in particular 
the oestrogen receptor (ER); and changes in the universe 
of p53 targets owing to cancer-associated p53 mutations 
that retain function.

Complex transcriptional regulation by p53
The p53 master regulatory network is composed of a vast 
number of genes that are direct targets for p53-mediated 
transactivation. Many factors influence the ability of p53 
to function as a sequence-specific transcription factor 
(fIG. 1). The organization, arrangement and localization 
of binding motifs, as well as the level of p53 expression, 
also have an important effect on the ability of p53 to 
transactivate from an RE sequence. There are many 
examples of p53-regulated genes, including those that 
encode p21, MDM2, insulin-like growth factor-binding 
protein 3 (IGFBP3) and tumour protein p53-inducible 3 
(TP53I3; also known as PIG3), which contain more than 
two p53 REs (referred to as clusters) that usually differ 
in their sequences and p53 binding affinities. In princi-
ple, carrying more than one binding site in the promoter 
would strengthen the responsiveness of the gene to the 
respective regulator46,47. For example, the p21 promoter 

region has one high-affinity and several low-affinity p53 
RE sites. In general, binding affinities seem to dictate the 
choices between regulating cell cycle arrest (high-affinity 
site) and pro-apoptotic responses (low-affinity sites)48. 
The position of p53 relative to the transcription start site 
also seems to be important for the p53-mediated trans-
activation, as more than 50% of the established REs are 
located in the 5′ promoter enhancer region of a gene, 
and ~25% are in the first intron12. However, chroma-
tin immunoprecipitation (ChIP) experiments indicate 
that p53 binding sites also exist at large distances from a 
transcription start site49,50. Elaborate signalling systems 
allow stresses and growth conditions to be translated into 
increased p53 stability, as well as nuclear availability; for 
example, an antisense RNA has recently been described 
that increases p53 mRNA stability and protein produc-
tion5. Proteins that determine p53 stability and avail-
ability to chromosomes are of particular importance, 
especially MDM2 and MDMX, which can ubiquitylate 
p53 and lead to its degradation51,52. At the most basic 
level, the amount of available p53 is expected to strongly 
influence the extent of transactivation.

Cofactors influencing p53 transactivation. Importantly, 
post-translational and gene-specific chromatin modifi-
cations of p53 can strongly influence transactivation at 
specific promoters9,53 (fIG. 1). There is a close relationship 
between the components of the transcription machin-
ery that p53 interacts with and the ability of p53 to 
activate its target genes13,54, including some that encode 
components of the Mediator55,56 and the SWI–SNF57 
pre-initiation complexes. Several p53 co-activators and 
co-repressors are histone-modifying enzymes, such as 
the histone acetyltransferase CREB-binding protein 
p300 (Refs 46,58–61), the arginine methyltransferase 
protein-arginine N-methyltransferase 1 (PRMT1) and 
the co-activator-associated arginine methyltransferase 
(CARM1)58. Other co-activator complexes, including 
SAGA and NuA4–Tip60, also function in p53-dependent 
gene activation62–64.

An increasing number of p53 cofactors has been 
shown to influence promoter-selective p53 transcrip-
tional activity, thereby altering the balance between cell 
life and death (for a review, see Vousden and Prives13). 
Here, we highlight a few examples of how cofactors can 
influence p53-dependent transactivation. After severe 
and irreparable levels of damage, p53 interacts with a 
series of cofactors that stimulate the transactivation 
of pro-apoptotic genes and the repression of cell cycle 
arrest, such as the prolyl isomerase PIN1 (Ref. 65) and 
the apoptosis-stimulating of p53 protein 1 (ASPP1)  
and ASPP2 genes66,67. The following can also be 
recruited by p53 to a subset of apoptotic target genes: 
cellular apoptosis susceptibility protein (CAS; also 
known as CSE1L)68, p38-regulated and DNA damage-
inducible protein 18 (p18; also known as Hamlet)69, as 
well as other transcription factors, including the p52 
subunit of nuclear factor-κB (NF-κB)70, the p53-related 
p63 and p73 proteins71, and the p53 isoform p53β72. 
Under conditions of low, transient and repairable dam-
age, p53 mainly interacts with cofactors that strongly 

 At a glance

• p53 is a key tumour suppressor and master regulatory transcription factor that is 
altered in most human cancers. Several stresses lead to p53 activation, which results in 
various biological outcomes, including cell cycle arrest and apoptosis. Each of these 
events seems to contribute to tumour suppression. The p53 network can be affected 
by variation in p53 levels and the variety of genes targeted.

• The extent of p53 transactivation and transcriptional repression is influenced by 
many factors, including p53 levels, cofactors and the specific response element (RE) 
sequences, all of which contribute to the role that p53 has in the aetiology of cancer. 
Cooperativity in cis between p53 and other transcription factors, such as oestrogen 
receptors, in the activation of canonical and non-canonical REs greatly expands the 
p53 master regulatory network.

• Essential components in the p53-mediated transactivation of target genes are the 
p53 RE sequences, which differ individually from the consensus sequence and 
support p53 transactivation to varying extents. Transactivation assays developed in 
budding yeast and human cells have been valuable tools for defining and assessing 
the p53 transcriptional functionality of potential RE targets.

• Non-canonical sequences that differ significantly from consensus can also support 
transactivation by p53, thereby greatly expanding the p53 transcriptional network. 
Canononical and non-canonical p53 REs can be transactivated by several p53 
mutants with altered functionality, many of which are associated with cancer.

• Using information about the functionality of p53 REs, it seems that in the evolution of 
humans and primates many DNA metabolism and repair genes have evolved to 
become responsive to p53 through the inclusion of functional p53 REs.
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Trans factors
• p53-activating stimuli 
• Cellular environment
• Protein–protein interactions
• Cofactors and transcription factors

• Nuclear p53 levels
• Post-translational modifications
• Chromatin environment, for example 

accessibility and epigenetics

Cis factors
• Non-canonical REs, for example half and
   three-quarter sites 
• Canonical tetrameric REs
• Mismatches in RE number or position

• Spacer length
• Sequence context and nearby
   transcription factor REs
• SNPs or CNVs
• Position of RE relative to TSS

p53 p53 p53

(0–2)

Target gene

Transcription:
initiation, elongation
or repression

p53

influence cell cycle arrest, such as inhibitor of ASPP 
(iASPP), which represses the transcription of apoptotic 
genes73, haematopoietic zinc-finger (HZF)74, mucin 1 
(MUC1), Y-box factor 1 (YB1)75,76 and the p53 isoform 
δ133 (Ref. 72).

In addition, there are cofactors that can modulate p53 
target selectivity in opposite directions. In the brain-specific 
homeobox/POU domain protein 3 (Brn3) family of tran-
scription factors, BRN3A promotes growth arrest by p53 
and BRN3B promotes apoptosis77,78. The list of factors 
that have a general role in transcriptional regulation 
of p53 targets in response to DNA damage is growing 
rapidly, and has recently been reviewed13. MicroRNAs 
that are directly induced by p53 can participate in p53 
responses30–33 and mainly function post-transcriptionally 
to reduce the stability and translation of target mRNAs. 
In many cases, the potential for tissue-specific, as well as 
stress-dependent, regulation of p53 activities by cofac-
tors remains to be clarified54,79,80 and — except for a few 

instances (for example, ASPP and iASPP) — the effect 
that p53 cofactors have in tumorigenesis remains to be 
established.

p53 REs: identification and functionality. Across the 
hundreds of targeted genes in the p53 network there 
is large variation in p53-dependent expression54,81–83. 
The sequences of the individual REs are expected to 
have a substantial functional influence on p53–DNA 
interactions in terms of binding and the level of trans-
activation as the amounts of available p53 change. 
Having established that p53 is a sequence-specific 
regulatory factor84–86, considerable efforts were made 
to determine what constitutes a target RE sequence. 
Traditional approaches examined in vitro binding to 
defined sequences, along with a corresponding evalu-
ation of in vivo transcriptional activity from defined 
sequences associated with reporters. A generally 
accepted consensus sequence for p53 binding is com-
posed of two 10-base decamers and a spacer as follows: 
RRRCWWGYYY…n…RRRCWWGYYY (in which R 
is a purine, Y is a pyrimidine, W is an A or T and the 
spacer is 0–13, although for functional REs the spacer 
is <3, as described below).

Recently, our understanding of the structural interaction 
between p53 and target DNA sequences has been greatly 
increased87–89. p53 binds as a dimer of dimers, in which 
each p53 subunit contacts three nucleotides of the RRRCW 
or WGYYY pentamer, resulting in mutual conformational 
changes of the protein and the target DNA. There is also 
limited sequence-independent DNA binding, which can 
be increased by non B-form DNA structures90–93. Other 
structural studies suggest that the p53 tetramer conforma-
tion provides effective interactions with components of 
the transcription machinery94 and that binding to DNA 
can affect the orientation of the transactivation domains 
in a p53 tetramer95. An alternative model of p53 quater-
nary organization in which p53 binds REs with variable 
spacer lengths has recently emerged96. Although there is 
much evidence for the conformational flexibility of the 
p53 DNA binding domain97, there is little direct structural 
evidence addressing how p53 might bind to sequences 
that differ from the canonical RE, including the half 
and three-quarter sites described below, and how these 
interactions might affect quaternary conformation and 
protein–protein interactions.

Among the endogenous human REs that have been 
validated by p53 binding and corresponding gene 
expression, nearly 95% have mismatches from the con-
sensus. These differences between target REs suggest 
degeneracy in the sequence requirement for RE function 
and raise the possibility that RE sequence differences 
between individuals45,98,99 and species100,101 might be well 
tolerated in the elaborate p53 network. However, in vivo 
sequence interactions with p53 are usually addressed 
under conditions of excess p53 and, therefore, may fail 
to reveal differences in the functionality of REs or the 
consequences of p53 mutations83,102–104. On the basis of 
in vitro dissociation constant (Kd) measurements45,105,106, 
the amount of p53 is expected to be a major determinant 
for binding differences between REs.

Figure 1 | Many factors affect p53-dependent transcriptional modulation and the 
universe of directly targeted genes. Many factors influence p53-dependent 
transcription and these can be divided into ‘cis’ and ‘trans’ factors. The interaction of the 
p53 sequence-specific protein with target response elements (REs) is essential in the 
transcriptional modulation of target genes. As discussed in the main text, various 
intrinsic features of the REs can greatly affect the transactivation potential of p53, 
including the sequence and organization of the individual functional units in an RE (that 
is, the monomer binding sites — identified with an arrow) and particularly the spacer 
separating the two decamer half sites. The distance from and position relative to the 
transcriptional start site and the presence of nearby or overlapping REs for p53 or other 
sequence-specific transcription factors functioning in cis can also contribute to 
transcriptional modulation. Variation in RE sequences or number, single nucleotide 
polymorphisms (SNPs) and unstable DNA elements can also affect p53 transactivation 
potential98,99. The many factors described here could have a different effect on the 
altered transactivation of many cancer-associated p53 mutants that retain at least some 
function. In addition to the REs, p53 binding to REs and transactivation potential is 
affected by various trans factors, particularly the levels of available p53. Cellular 
perturbations can differentially activate signal transduction pathways, resulting in 
complex patterns of post-translational modifications of p53 as well as p53-interacting 
proteins, such as MDM2 and MDMX9,11,196,197. The cell type and stress responses also 
influence the availability of cofactors and sequence-specific transcription factors62,79,80. 
These changes result in fine-tuning of p53 nuclear levels and could directly affect p53 
DNA binding specificity and the potential for protein–protein interactions65,198–201. 
Chromatin changes, including post-translational modifications of histone tails and 
remodelling of nucleosomes that can be mediated by p53-recruited histone modifying 
enzymes also affect transcriptional modulation54,58. CNV, copy number variant;  
TSS, transcription start site.
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A full understanding of the variation in responsiveness 
to p53 and, therefore, p53-mediated biological conse-
quences requires an understanding of what constitutes 
a potentially functional RE in cells and the effect of  
varying levels of p53 on functional response.

The approaches that have been used to identify and 
validate functional REs are outlined in BOX 1, together 
with a comparison of the consensus p53 RE sequences 
obtained with different experimental approaches. These 
studies have provided broad functionality guidelines101 

Box 1 | Techniques to identify and validate functional REs

Two general approaches have been taken to identify and validate 
functional response elements (REs): chromatin immunoprecipitation 
(ChIP) and transactivation in response to induction of p53. ChIP typically 
involves the treatment of cells with a DNA-damaging agent and 
identifying and measuring the amount of target region DNA bound by the 
p53 protein49,50,81,135,136,186. The ability of a sequence to support p53 
transactivation is often confirmed in mammalian cells using a reporter 
assay in which the putative target sequence is placed in the context of a 
minimal promoter upstream of a reporter, and p53 is supplied 
endogenously or by a transfected plasmid.

More direct methods are needed to assess the in vivo functionality of REs. 
Importantly, most in vivo approaches are limited in their ability to identify 
weakly binding sequences or new sequences or motifs that do not fall into 
the canonical p53 consensus. Direct assessment of the potential 
functionality of target REs requires the ability to quantitatively vary levels 
of intracellular p53, an approach that is analogous to assessing p53 binding 
in vitro. Although this is difficult to attain in mammalian cells, it has been 
possible by modifying a yeast-based system187,188 so that the levels of p53 
could be modulated over several hundred-fold and transactivation could 
be determined at individual REs placed upstream of a reporter on a 
plasmid or in a chromosome103,107. Using this approach, the functionality of 
established individual RE sequences, most of which deviate from 
consensus, can vary over 200-fold from high (for example, CDKN1A (also 
known as p21) and RRM2B (also known as p53R2) that require low levels of 
p53) to weak (requiring high p53 levels; for example, BAX and NOXA (also 
known as PMAIP1)) to poor responders (for example, TP53I3 (also known as 
PIG3)). The quantitative findings obtained with the yeast system have 
corresponded well with more qualitative results in human cells107,189.  
A recently developed semi-in vitro system based on the ability of p53 in 
nuclear extracts of human cells to bind to REs attached to beads has 
shown a good correlation between p53 binding and the in vivo 
functionality of REs107,113.

Sequence logos provide a convenient way of summarizing the effect of 
individual bases in a consensus sequence on a particular biological 
outcome. The figure shows p53 logos derived using different methods. 
Although the potential for p53 to bind to sequences is important for 
identifying possible target sites in the genome, the results obtained with 
purified p53 show limited agreement with in vivo binding or the 
functionality of specific REs, or even binding in nuclear extracts. The CATG 
sequence in the CWWG core is especially prevalent in the logos that 
correspond to in vivo binding and high or moderate functionality.

Part a of the figure shows the logo for in vitro binding, originally 
presented in Ref. 45. The effects on DNA binding, the dissociation 
constant (K

d
), of single nucleotide changes were compared with the 

highest affinity sequence identified. The height of a base is proportional 
to the effect of that change on the binding affinity. Part b of the figure 
shows the sequence logo developed from semi-in vitro binding results 
obtained from doxorubicin-activated p53 in the nuclei of lymphoblast 
human cells113. Part c of the figure shows logo representations of p53 REs 
identified based on in vivo occupancy studies. Part i shows the results that 
were obtained from a ChIP-cloning approach originally presented in 
Ref. 50 and part ii shows the results that are from a ChIP-chip study 
originally presented in Ref. 135. In both logos, the height of a letter at 
each given position of the p53 RE is proportional to the frequency of its 
corresponding nucleotide at that position among the identified p53 REs in 
p53-bound DNA sequences. Part d of the figure is a logo representation of 
the sequence features of p53 REs grouped based on their relative 

transactivation potential, as determined from yeast-based assays98,101–103. 
The criteria for functional scoring are described in the text and in 
Supplementary information S1 (figure). Note the difference at positions 
3 and 13 for high functionality and in vitro binding compared with those 
positions for the other in vivo-derived logos. The WebLogo3 free online 
tool (see the WebLogo website) was used to generate logos that depict 
the frequency of bases at each position of the p53 REs190.
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that are described in Supplementary information S1 
(figure) (the assessments of predicted transactivation 
capacity have been updated to include results from a 
recent analysis of non-canonical REs, such as half and 
three-quarter sites107, see below). The in vivo quantitative 
analyses of functionality have yielded insights into the 
effect of changes in the consensus CWWG core and  
the spacer on transactivation. For example, altering C or 
G in either decamer can dramatically reduce the respon-
siveness to p53. The arrangement CATG allows much 
stronger transactivation than the three other possibilities 
(CAAG, CTAG or CTTG). The strong binding associ-
ated with CATG45 might reflect bending capabilities108,109 
or greater flexibility of the DNA. Unlike in vitro bind-
ing, a spacer of a few bases between decamer regions 
dramatically affects functionality in cells, as well as the 
binding of REs in a semi-in vitro assay using human cell 
extracts107. This is consistent with the fact that most vali-
dated human REs have a spacer that is less than three 
bases12,50 and suggests that variation in spacer length may 
be an important mechanism for maintaining a particular 
level of functionality107.

Functionality seems to be strongly influenced by the 
bases surrounding the CWWG core, particularly  
the bases GGG and TCC for the high and moderate func-
tionality groups of p53 REs, which have been shown to 
increase binding at full-site REs107,110 (D.M., A.I. and 
M.A.R., unpublished observations) (see Supplementary 
information S1 (figure)), and by the overall number of 
mismatches. Notably, the level of p53-mediated transac-
tivation could have a role in RE sequence selection dur-
ing evolution, resulting in differences between the in vitro 
DNA binding potential and the in vivo frequency of spe-
cific RE sequences. For example, there may be a selective 
advantage in retaining weak p53 REs100,101 compared with 
high-affinity p53 binding sites. The weaker REs could 
allow fine-tuning of responses through the regulation 
of p53 protein levels54,80 or by specific post-translational 
modifications that could affect DNA binding affin-
ity111,112. Technical limitations of ChIP-based approaches 
may skew the identified REs towards high-affinity p53 
binding sites50.

The functionality guidelines described in 
Supplementary information S1 (figure), which have been 
developed partly on the basis of quantitative analysis of 
REs that are responsive to p53, have proved to be useful 
in searches for single nucleotide polymorphisms (SNPs) 
that could affect stress responses from potential REs98 
and therefore possibly influence the individual risk of 
developing cancer. Subsequent examination of these 
alleles in yeast- and human cell-based systems and using 
a semi-in vitro DNA bead assay113 confirmed that there 
were differences in the capability of p53 to transactivate 
from these allelic REs.

The relative importance of individual bases in p53 
REs is described in the sequence logos in BOX 1, which 
summarize the in vitro and in vivo binding of p53, as 
well as the ability of an RE to support p53 transactiva-
tion. Although the potential for p53 to bind to different 
DNA sequences is important for identifying possible 
target sites in the genome, the in vitro results show 

limited agreement with the in vivo binding results or the  
functionality of specific REs in cells. The CATG sequence 
in the CWWG core is especially prevalent in the logos for 
in vivo binding and high and moderate functionality.

In summary, the biological effect of the p53 regula-
tory network and the consequences for tumour suppres-
sion are likely to be strongly influenced by the potential 
functionality of the p53 target RE sequences, as well as by 
the level of available p53 (Ref. 102), cofactors and stress-
dependent post-translational modifications that can 
affect p53 interactions with the cofactors or the assembly 
of the transcriptional machinery at target promoters.

Transcriptional repression by p53. The p53 tumour sup-
pressor can function as a repressor and an inducer of 
gene expression114–118. Repression is detected for ~15% 
of the recently described validated target REs12 that are 
associated with various genes involved in cell prolif-
eration, cell cycle control, apoptosis and cytoskeleton 
organization, including genes that encode important 
cancer-promoting factors, such as survivin (also known 
as baculoviral IAP repeat-containing protein 5 and 
BIRC5)119, Myc120, stathmin (also known as STMN1)116 
and vascular endothelial growth factor A (VEGFA)20. 
Interestingly, p53-dependent repression of Myc has also 
recently been linked to the p53-dependent induction of 
miR-145 (Ref. 121).

Reports differ on the cis-element requirements for 
p53-dependent repression, mainly because of the diffi-
culty in identifying canonical p53 REs in the promoters 
of repressed genes114. However, there are some examples 
that suggest that the organization and/or the sequence 
of a p53 RE can have a role in transcriptional repression. 
In the multidrug resistance 1 (MDR1) promoter122, the 
head-to-tail arrangement of the two pentamer binding 
sites comprising a p53 decamer leads to p53-mediated 
repression, as does a three-nucleotide spacer between 
two decamers in the survivin gene119. Many downregu-
lated genes contain proposed target sequences that dif-
fer from the p53 binding consensus, suggesting both 
direct and indirect mechanisms of p53 repression119,123. 
A p53 target-repressing sequence change of CWWG to 
CCAG was identified in the promoter of LASP1, which 
is expressed in hepatocellular carcinoma124. Recent func-
tional studies by Wang et al.125 have led to the description 
of a new p53 consensus site for repression in which only 
the C and G nucleotides in the CWWG core domain are 
conserved, and a specific dinucleotide combination in 
the newly defined CXXG core motif can determine the 
repression by p53 of a target promoter.

As p53 has dual activation and repression proper-
ties, how these two activities are regulated is one of the 
challenges in the field of p53 research. At least part of 
the regulation must be context dependent, including the 
location of the p53 RE at the target gene and its relation-
ship with proximal and/or overlapping binding sites of 
other transcriptional cofactors114. Other proposed mech-
anisms for p53-mediated repression include interference 
with the basal transcriptional machinery, recruitment 
of chromatin modifying factors to reduce promoter 
accessibility and the recruitment of transcriptional 
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co-repressors114. p53 can compete with other TFs, such 
as SP1, E2F1 and BRN3A, for partially overlapping or 
adjacent binding sites, leading to a reduction transactiva-
tion119,126–134. However, the rules dictating which cofactor 
will be predominantly recruited by p53 at a target pro-
moter for the activation or repression of gene expression 
are still elusive.

Non-canonical sequences expand p53 universe
Although many sequences have been validated as target 
p53 REs (TABLe 1), genome analysis and ChIP binding 
studies indicate that many more genes might be targeted 
by p53. Genome-wide approaches have been used to find 
sites of p53 binding and potential p53 target genes50,81,135, 
and projections from smaller-scale but high-resolution 
studies136 suggest that thousands of sites in the genome 
are bound by p53. Although binding does not necessar-
ily lead to transactivation, these results suggest that the 
complexity of the p53 network is far from being fully 
described. Nearly 95% of natural REs have at least one 
mismatch from the consensus sequence and around 
10% of the validated REs have novel sequences that 
are not clearly related to the consensus sequence (see 
Supplementary information S2 (table)).

The recent finding that a half site (which has 10 
bases rather than 20) can function as a p53 target RE 
has led to the expansion of the universe of genes that 
might be directly controlled by p53 (Ref. 22). An SNP 
identified in a 25 base pair region of the promoter of 
vascular endothelial growth factor receptor 1 (VEGFR1; 
also known as FLT1) gene results in a sequence that 
can function as a p53 target RE, bringing together the 

VEGF-mediated angiogenesis pathway and the p53 
stress response pathway. The observed C to T change  
in the first decamer (GGACAcTGCT) resulting in 
GGACATGCTCccctgGGACcTGagC creates a perfect 
consensus half site containing the strong CATG core 
in approximately 5% of the population. Unexpectedly, 
the putative RE was functional and could bind p53 
even though there was a five-base spacer and three mis-
matches in key positions in the second half site. In fact, 
the half site was sufficient for functionality. This find-
ing helped to explain the limited responsiveness of half 
sites separated by over ten bases107 and suggested that 
non-canonical sequences might have a general role in 
the p53 network.

Subsequent studies in yeast and human cells estab-
lished the functionality of half and three-quarter p53 
RE sites107. The functionality of these sites in terms of 
in vivo binding and transactivation can be similar to 
weakly or modestly responding full-site REs, such as 
those associated with the BAX and aryl hydrocarbon 
receptor-interacting protein (AIP) genes. Typically, 
the half-site responsiveness is less than 10% of the 
level of p53-mediated transactivation at a complete 
CDKN1A RE. As established for full-site REs using the 
yeast-based system, the CWWG core is important and 
CATG is the strongest functional sequence107. Similar 
findings of half-site functionality were obtained with 
human osteosarcoma cells (SaOS2) on the basis of p53 
binding and transactivation107 (D.M., A.I., M.A.R., 
unpublished observations). The response to DNA-
damaging agents (such as ultraviolet and infrared 
irradiation, as well as doxorubicin and 5-fluorouracil 

Table 1 | Sequence conservation of p53 targets in humans and rodents*

Biological function‡ Total 
res

Canonical p53 
res in humans§

non-canonical p53 
res in humans||

Sequence 
conservation¶

Functional 
conservation¶

Apoptosis 37 27 (1) 10 (2) 8 (2) 12

Cell cycle, senescence, 
development and differentiation

28 20 (1) 8 (3) 14 (7) 12

DNA repair 15 10 (1) 5 3 (1) 0

Cytoskeleton, cell adhesion, 
angiogenesis and migration

18 11 (2) 7 (4) 7 (3) 5

Feedback and regulation 10 8 2 6 5

Cytokine production and 
inflammation

11 7 (1) 4 (3) 4 (2) 5

Transcription and translation 14 9 5 (1) 10 (3) 9

Various 13 9 (2) 4 (3) 6 (2) 5

Total number of p53 REs analysed 146 101 (8) 45 (16) 58 (20) 53

  69% 31% (11%) 38% (14%) 36%

*The human p53 REs have been validated in various studies: 138 are described in Ref. 12; 4 are from the FLT1 and RAP80 
promoters, as described in the text, and 4 are described in Ref. 96. ‡Several REs are associated with genes that may be involved in 
more than one biological process according to the Gene Ontology database. Presented is the most common and validated 
biological process for each gene.§ Number of REs with two decamers that may have mismatches. Number of REs with no 
mismatches in parentheses. ||Number of REs that lack a complete canonical RE but contain either half or three-quarter sites or new 
sequences that vary widely from consensus (the number of the new sequences are in parentheses; see text and Supplementary 
information S2,S3 (tables). All the half and three-quarter sites contain a perfect consensus decamer. ¶Conservation of sequence 
and functionality from humans down to rodents, as well as other species, has been analysed according to methods described in 
Ref. 96. Among the REs described in Ref. 12, 31 had been previously analysed in Ref. 96. The number of non-canonical sequences 
is indicated in parentheses. All the non-canonical sequences are half or three-quarter sites. Complete documentation for all 146 
REs analysed has been deposited with Nature Reviews Cancer and the information is available on request from the authors.  
RE, response element. 
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exposure) can differ between half sites137 (M.A.R., 
A.I., D.M., unpublished observations), suggesting 
the involvement of additional control factors, as is the 
case for complete REs.

Despite the functionality of REs with only ten bases, 
tetramerization is still required for efficient binding and 
transactivation in yeast and human cells107 (D.M.  
and M.A.R., unpublished observations). This is con-
sistent with the lower dissociation constants for wild-
type p53 binding to a half site compared with a dimeric 
mutant protein138. Possibly, sequence-specific binding 
of p53 to the half site along with weaker, nonspecific 
DNA binding provides opportunities for tetramer-
derived transactivation. Nevertheless, a dimeric form 
of p53 created by the L344A mutation can bind to the  
p53 half site138, although it binds with sixfold less affin-
ity than wild-type p53 (Ref. 105). On the basis of bind-
ing by carboxy-terminal p53 fragments that contain 
tetramerization or dimerization mutations, the dimer 
form of p53 is required for nonspecific DNA binding139. 
The L344A mutant, as well as another mutant — N345S 
— that fails to form tetramers, also retained modest 
transactivation activity towards half sites, based on 
luciferase reporter assays in human cells107,140 (D.M. and 

M.A.R., unpublished observations). The three-quarter 
sites are also functional and exhibit greater transactiva-
tion than half sites. Recently, tetramerization was also 
found to increase p53 transactivation from other non-
canonical REs141 that contain a specific two-nucleotide 
spacer between quarter sites. The contribution of non-
specific DNA binding of p53 to the interaction with 
non-canonical REs remains to be clarified54,107,141. It is 
unclear whether p53 tetramers are formed before inter-
action with the target DNA or are assembled after bind-
ing of the separated dimers to half sites. The half sites 
are transactivated only when p53 levels are high, unlike 
full-site REs, some of which can mediate transactivation 
even at very low p53 levels103,107.

A summary of canonical compared with non-canonical 
sequences is shown in TABLe 1, and the sequence 
conservation of 146 validated REs that can support 
p53 transactivation is shown in BOX 2 (138 are from 
Ref. 12). The corresponding genes were categorized 
using the Gene Ontology database (see the DAVID 
Bioinformatics Resources website)142. Among the 
REs, 45 (31%) seem to be non-canonical. This group 
includes REs with one consensus decamer only (which 
contain mismatches in the CWWG core in the other 

 Box 2 | Evolution of the p53 network through REs

Evolutionary analysis has provided useful insights into potential p53 targets as the inclusion or exclusion of genes in a 
transcriptional network could be accomplished by changes in regulatory sequences as well as the transcriptional 
regulator. Once rules for response element (RE) functionality are established it is relatively straightforward to address 
how changes in RE sequences contribute to the evolutionary inclusion or exclusion of genes in the p53 network. 
Recently, the evolution of the p53 network has been addressed using a combination of functionality rules (see 
Supplementary information S1 (figure)), in silico analyses and direct evaluation of RE functionality. Validated p53 REs 
from human p53-regulated genes were examined across many species with an emphasis on primates and rodents100,101, 
and conservation of both RE sequence and functionality were displayed in a ‘heat map’ format. Comparisons with 
rodents are especially relevant because p53 is highly conserved (>85%) and human p53 substitutes well for the mouse 
protein in whole animals191.

There is functional conservation for several REs, such as the p53 target REs of the cell cycle and proliferation genes SNK, 
CDKN1A (which encodes p21), apoptotic protease-activating factor 1 (APAF1) and p53 upregulated modulator of 
apoptosis (PUMA; also known as BBC3). However, for most p53 target REs there is considerable variation in sequence and 
functionality; some REs are detected only in primates101,192–194. TABLe 1 summarizes the canonical and non-canonical 
sequences as well as sequence conservation for 146 validated REs (136 from Ref. 12) that can support transactivation. 
Only around one-third of the REs found in humans are functionally conserved in rodents (complete documentation for all 
146 REs analysed across 16 species has been deposited with Nature Reviews Cancer and the information is available on 
request from the authors). Compared with genes related to checkpoint controls, the p53 target sequences of human 
apoptosis genes generally seem to be less conserved both in terms of sequence and predicted functionality in rodents. 
This variation contrasts sharply with the RE target sequences of master regulatory proteins such as nuclear factor-κB 
(NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), which are well preserved across species100.

Surprisingly, among the entire group of 15 p53-targeted human REs from 12 genes affecting DNA metabolic activities, 
none is functional in rodents. This result confirms previous results in which six of these DNA metabolic genes were 
investigated in depth and were also found to be lacking in compensating functional RE sequences101. This suggests that 
these 12 genes are not part of the direct p53 regulatory network in rodents. In humans, the DNA metabolic genes 
(TABLes 1,2) are under the influence of p53 through p53-targeted canonical and non-canonical REs. This finding was 
recently extended to three REs in the promoter of receptor-associated protein 80 (RAP80; also known as UMC1), a gene 
that can influence BRCA1-mediated double-strand break repair137. The p53 REs of human RAP80 are not detected in 
rodents, and potentially compensating sequences related to p53 REs are predicted to lack transactivation function.

These observations suggest that the paths that led from a common ancestor to the concerted evolution of modern 
rodents and primates may have resulted in the selective inclusion of genes that affect DNA metabolism into the p53 
network. Although several hypotheses can be offered for the differences in human and rodent p53 REs, the additional 
coordinated regulation in response to stresses in primates may ensure added genome protection in organisms that have 
longer lifetimes and, therefore, are at greater risk for DNA damage-induced disease, particularly cancer. Also, exposure to 
a broader range of environmental agents, such as ultraviolet light damage to skin, may increase the need for greater 
inducibility of DNA repair195.
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decamer), three-quarter sites, REs with a spacer >13 
bases (that is, 13 bases is the maximum spacer in the 
original consensus sequence) and REs with mismatches 
in both CWWG cores. Examples of such non-canonical 
REs are shown in Supplementary information S3 (table). 
All of the half and three-quarter site REs contain a 
perfect consensus half site (RRRCWWGYYY). In the 
group of non-canonical REs, there are 16 novel REs 
that differ widely from full- or even half-site consen-
sus. Most of these 16 REs have been characterized by 
in vitro binding or by reporter assays; however, only a 
few were validated by in vivo binding and endogenous 
gene expression. Therefore, given the potential func-
tionality of half sites and the expected large number of 
half and three-quarter sites across the genome, non-
canonical REs can greatly expand the p53 universe 
of transcription targets. In a preliminary genomics 
screen, we have identified over 1,400 consensus p53 
half sites containing a CATG core motif in the genome 
within 2 kb of a transcriptional start site (D.M., A.I. and 
M.A.R., unpublished observations).

Interestingly, further analysis of the validated REs 
(BOX 2; TABLe 1) has revealed that several of the non-
consensus REs are maintained during evolution, based 
on a comparison of rodents and primates. This is con-
sistent with our previous observations of selection for 
sites that can weakly respond to p53 (Refs 100,101). In 
addition, evolutionary analysis of p53 REs has been help-
ful in locating REs, as well as investigating the evolu-
tion of p53-responsive systems (BOX 2). For example, it 
seems that the p53 responsiveness of the DNA repair and 
metabolism set of genes in humans has evolved sepa-
rately from that in mice, suggesting differences in the 
responsiveness to cancer-inducing agents between mice 
and humans (TABLe 2).

The functional dependency of half-site REs on the 
type of inducing stress137, the levels of p53 and  
the possible cooperation between p53 and other tran-
scription factors indicate that the expression of the 
associated genes would be particularly sensitive to 
perturbations of the cellular microenvironment. This 
feature, as exemplified by the crosstalk between p53 
and ER in the regulation of VEGFR1, suggests that 
regulatory modules containing non-canonical p53 
REs could be associated with important genes for 
p53-mediated tumour suppression. Determining the 
relationship between expression levels and respon-
siveness at canonical and non-canonical target REs 
is important for addressing the consequences of p53 
alterations in cancer aetiology, particularly those 
mutations that retain transactivation capabilities, as 
discussed below.

cis interactions between networks
Gene promoters typically contain target sequences 
for multiple TFs, raising the possibility of cis inter-
actions between master regulatory networks. Several 
examples of interactions between p53 and other TFs 
or cofactors have been reported on the basis of experi-
ments in mammalian cells that have focused on vari-
ous p53-regulated promoters (fIG. 2c). For example, 
as noted above, p53 can compete at sequences that 
overlap with the target REs of other TFs, leading to 
repression. There are several other TFs that have a 
negative or positive effect on p53-mediated transac-
tivation, including NF-κB142–145, nuclear factor-Y146–148, 
SP1 (Refs 127,129,130), interferon regulatory factor 1 
(IRF1)149,150, ER151–153 and SMAD154,155. The p53 homo-
logues p63 and p73 also have complex interactions 
with p53, although reports differ on the outcome of 

Table 2 | Human genes related to DNA metabolism and/or repair processes with validated p53 REs

Gene Full name of gene re Type* entrez 
Gene link

DDB2 Damage-specific DNA binding protein 2 Consensus DDB2 

FANCC Fanconi anemia, complementation group C Half RE FANCC 

GADD45A Growth arrest and DNA damage-inducible, alpha Half RE GADD45A 

GPX1 Glutathione peroxidase 1 Half RE GPX1 

MLH1 mutL homolog 1 Full RE MLH1 

MSH2 RE1 mutS homolog 2 Full RE MSH2 

MSH2 RE2 mutS homolog 2 Half RE MSH2 

PCNA Proliferating cell nuclear antigen Three-quarter RE PCNA 

PMS2 Postmeiotic segregation increased 2 Full RE PMS2 

UIMC1 (also known as RAP80) RE3 Ubiquitin interaction motif-containing 1 Full RE UIMC1 

UIMC1 RE4 Ubiquitin interaction motif-containing 1 Full RE UIMC1 

UIMC1 RE5 Ubiquitin interaction motif-containing 1 Half RE UIMC1 

RRM2B Ribonucleotide reductase M2 B Half RE RRM2B 

SCARA3 Scavenger receptor class A, member 3 Half RE SCARA3 

XPC Xeroderma pigmentosum, complementation 
group C

Full RE XPC 

*All of the half and three-quarter sites contain a decamer with no mismatches from consensus. RE, response element.
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the crosstalk, which depends on specific target genes 
or cell type71,135,156,157. The relative expression of p63 or 
p73, as well as p53 splice and promoter variants, could 
be an underlying source of differences in these interac-
tions72,158. Also, TFs can drive proteins that affect the 
stability of p53. Interestingly, a polymorphism has been 
described that indicates that MDM2 can be controlled 
by the ER159,160.

Despite the large amount of information regarding 
the multiple factors that influence p53 responses, there 
are no clear molecular rules that dictate the recruit-
ment of different combinations of transcription factors  
and cofactors at a given promoter in a specific cell type and 
in response to a given stress condition. Studies to clarify 
these aspects are needed, particularly to address the 
tissue-specific risk of developing cancer in relation to 
alterations in the p53 pathway.

cis interactions with the ER master regulator. Recently, 
new complexity in the p53 network was revealed: p53 
and ER can function in cis at a promoter to syner-
gistically increase the responsiveness of potential 
p53 targets161. This synergy is created through a p53 
non-canonical half-site target RE and an ER half-
site RE located ~250 nucleotides upstream (fIG. 2a). 
This extends the observation (discussed above) of 
transcription from the VEGFR1-T allele, which con-
tains a p53 half-site RE. In transfection assays that 
included p53, ER and a 1 kb region of the VEGFR1-T 
promoter linked to a reporter, the presence of ERα or 

ERβ resulted in an ER ligand-dependent, synergistic 
increase in p53-mediated expression. This finding 
also merged three major pathways that affect car-
cinogenesis: p53, VEGF-mediated angiogenesis and 
ER-mediated hormone responses. Although ER may 
directly interact with p53 (Refs 151,152), the observed 
synergy was specifically due to the action of ER in cis, 
as mutation of the ER target sequence prevented ER 
stimulation. The binding of ER seemed to be depend-
ent on p53 — possibly through a co-activator, such 
as the thyroid hormone receptor-associated protein 
(TRAP)–mediator complex.

Because a five-nucleotide ER half-site sequence is 
thought to frequently occur in the genome, we investi-
gated the generality of the ER–p53 synergy (D.M., A.I. 
and M.A.R., unpublished observations). The p53 half-
site RE in the 1 kb promoter region of VEGFR1-T in 
the reporter plasmid was replaced by various half sites 
or by well-established full-site REs for p53-induced 
transactivation. These full-site REs could be weak or 
moderate (such as those from AIP and growth arrest 
and DNA damage-inducible 45 (GADD45)) or strong 
(for example, that from CDKN1A). Remarkably, not 
only was there ER and p53 synergy in the responsive-
ness to p53, but the greatest effects were also obtained 
with the half sites and the weaker REs (up to fivefold; 
see the example in fIG. 2b).

As the p53 responsiveness of REs can be greatly 
increased by an ER site in cis, does this apply to mutant 
p53s that retain transcriptional function? We recently 

Figure 2 | Cooperation in cis between p53 and other master regulators to drive 
transactivation at canonical and non-canonical p53 res. a | Transcriptional 
responses owing to in cis interactions between p53 and oestrogen receptor (ER), as 
determined for a promoter region of vascular endothelial growth factor receptor 1 
(VEGFR1) that contains a non-canonical half-site p53-response element (RE)  
(VEGFR1-T RE) and a half-site ER RE (ERE)161 located ~200 nucleotides upstream. 
Activation of p53 (for example, after DNA damage) results in the interaction of p53 with its 
half-site RE in the VEGFR1 promoter, leading to limited transactivation. If the ER pathway 
is also activated by an ER ligand, then ER can interact with its ERE, leading to a synergistic 
increase in transactivation. b | The level of transactivation and synergy with ER is highly 
dependent on the sequence and strength of the p53 RE. As expected, the replacement of 
the original half-site RE in the VEGFR1 promoter with a canonical p53 RE derived from the 
CDKN1A (p21) target gene results in higher p53-driven transactivation; however, the 
transactivation is increased twofold by the presence of activated ER. p53 mutants with 
altered transactivation (but not loss of function) can also cooperate with ER in the 
transactivation of the reporter. The individual transactivation characteristics of the p53 
mutant can affect the response to ER (presented here is a comparison between G279R 
and R337C, corresponding to p53 RE mutants A and B, respectively; (D.M., A.I. and M.A.R., 
unpublished observations)). c | Examples of how other sequence-specific transcription 
factors could function in cis with p53. Partially overlapping REs can result in negative 
interactions, such as in the case of p53 and SP1 REs. For some transcription factors 
combinatorial interactions have been inferred based on the significant over- 
representation of cognate REs among p53 targets (AP2, myeloid zinc finger 1 (MZF1) and 
ETS2)135, and for others (interferon regulatory factor 1 (IRF1), SP1, nuclear factor-Y (NF-Y), 
SMAD, aryl hydrocarbon receptor (AHR) and nuclear factor-κB (NF-κB)) there are reports 
of functional interactions with p53 that, unlike for VEGFR1, were not shown to be 
cooperative and seemed to be mediated by canonical promoter elements147,154,202. In the 
case of p63 and p73, interactions may occur through shared REs; the relative affinity 
may dictate the expression of the associated gene. For example, relative differences in 
the effect of a C or G instead of a W in the CWWG were reported in comparisons 
between p53 and p63 proteins interacting with DNA157,203. NEO, neomycin control;  
TFBS, transcription factor binding site. 
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examined several cancer-associated p53 mutants 
for their ability (with and without ER expression) to 
transactivate the VEGFR1-T motif reporter plasmids 
described above that contain various half- and full-site 
p53 REs (D.M., A.I. and M.A.R., unpublished observa-
tions). The transcriptionally inactive G279E mutant was 
also non-functional in this system. However, for two 
mutants (fIG. 2b), which have reduced transactivation at 
several REs, including the VEGFR1-T RE and the full-
site p21 RE, the presence of ERα greatly increased p53 
responsiveness. The increase in responsiveness was due 
to ER functioning in cis, as inactivation of the ER target 
sites removed the stimulation. Therefore, for some p53 
mutants, cellular ER status and in cis cooperation may 
be important for reactivating or potentiating residual 
transactivation capabilities. This might contribute to 
the poorer cancer prognosis for ER-negative tumours. 
It will be interesting to assess whether there is an in cis 
interaction between p53 isoforms72 and ER. The ability 
of ER to synergize with mutant p53 and increase trans-
activation may provide a means for assessing whether a 
mutant protein has retained structural integrity, which 
could prove useful for developing chemical modifiers.

These results demonstrate the potential for ER to inter-
act in cis with weak p53 targets that might normally be 
undetected. This finding raises many questions, including 
the generality of the synergy between ER and p53 across the 
genome and the requirements for the synergy, such as  
the distance between the ER and p53 targets, as well as var-
iations in target sequences. For example, there are over 600 
VEGFR1-T promoter-like motifs in the human genome 
(D.M., A.I. and M.A.R., unpublished observations) based 
on an in silico search of 2 kb promoter regions upstream 
of transcriptional start sites using the following motif:  
(half ERE) … (<250 nucleotides) … (half p53 RE) … 
(<250 nucleotides) … (half ERE).

The abundance of these motifs suggests that the uni-
verse of p53 target sequences is much larger than indicated 
by investigations that focused on full-site REs or even 
half sites. These observations set the stage for investigat-
ing other transcriptional factors that might have a role in 
p53-targeted gene expression. Using bioinformatics-based 
composite module pattern searches, REs for kruppel-like 
factor/paired box 4 (KLF/PAX4), SP1 and NF-κB are 
over-represented among p53 target promoters (Ref. 135;  
A. Jegga, personal communication). This suggests that 
these proteins can participate in p53-dependent trans-
activation and that their dysregulation in cancer cells 
could modulate p53 functions in some tissue types or 
stages of tumorigenesis. For example, PAX4 was proposed 
to function as a tumour suppressor in melanoma162 but 
as a survival gene in insulinoma cells163. Other TFs were 
shown to modulate p53-dependent transactivation in 
cis; however, unlike for VEGFR1, the functional inter-
actions were dependent on canonical REs and were not  
synergistic (fIG. 2c).

Functional p53 mutants change the universe of p53-
regulated genes. Cancer-associated p53 mutants can 
be divided into three functional categories: complete 
loss of function, gain of function and altered spectrum. 

Most of these mutants lack direct sequence-specific 
transcriptional activity. The latter two categories are 
not surprising as cancer mutations are typically mis-
sense and affect amino acids in the DNA binding 
domain of p53 (Ref. 42) (see the International Agency 
for Cancer Research TP53 Mutation Database). Also, 
in some cases mutant p53 proteins are abundantly 
expressed in the cell, partly owing to the loss of the 
MDM2 negative-feedback loop164. For gain-of-function 
p53 mutants165,166, altered p53 can form complexes 
with NF-κB167 and nuclear factor-Y168 and are recruited 
to new promoters (for example, vitamin D3 receptor 
(VDR))167. Mutant p53 proteins were recently shown to 
bind to SMAD2–p63 complexes and affect the migra-
tory potential of epithelial cells, therefore directly  
affecting metastatic potential169.

Approximately 30% of the p53 mutants that are 
associated with cancer retain transactivation activ-
ity towards at least a few REs (see the International 
Agency for Cancer Research TP53 Mutation Database). 
Although the reported functionality of mutants may 
differ between studies (partly because of the methods 
for evaluating RE functionality), evidence of sequence-
specific transactivation suggests that at least some 
transactivating function has been retained. Among 
these p53 functional mutants there are various changes 
in transcription patterns from individual REs that can 
depend on p53 expression levels. For example, several 
transcriptionally active mutants identified in breast170–172 
and adrenal gland cancers173 have subtle defects in 
the transcription at REs that are revealed at the low 
expression levels that can be achieved in a yeast-based 
system102,107,174.

Many of the functional mutants affect the spectrum 
and levels of transactivation from various REs. There 
are even mutants (such as S121F, T123A and N288K175–177) 
for which the responsiveness at some REs — that are 
weakly transactivated by normal p53 — is greatly 
increased. Changes in the ability of p53 to function at 
various REs can diversify the downstream biological 
responses and might be an important component in 
some cancers. This was demonstrated for apoptosis and 
radiation survival, in which expression of the T125R 
mutant led to γ-radiation sensitivity and resistance 
to ultraviolet irradiation; expression of the wild-type  
protein resulted in the opposite phenotype177.

The altered networks resulting from mutations in 
p53 might be expected to affect prognosis. This has 
been shown for Li-Fraumeni syndrome, in which the 
onset of cancers is delayed in individuals harbouring 
altered-function mutations41,172. However, in sporadic 
breast cancer the functional classification of p53 muta-
tions did not provide additional prognostic value com-
pared with the assessment of the presence or absence 
of p53 mutations178. On the contrary, the transactiva-
tion potential of p53 mutant alleles correlated with a 
worse outcome in specific stages of sporadic colorectal 
cancer179.

These findings with functional, cancer-associated 
mutants have broad implications for the evolution of 
master regulatory networks. As a single mutation can 
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alter the range of genes transactivated and the levels 
of responsiveness, such changes could allow the rapid 
functional evolution of many components in a sys-
tem. In this sense, p53 may represent a ‘master gene 
of diversity’ (Ref. 102), at the organismal level and at 
the tissue level, in terms of the emergence of can-
cers. A specific example of evolutionary changes in 
the p53 sequence was described for the mole rat and 
was proposed to be part of the adaptation to hypoxic 
environments180,181.

Conclusion
The cellular responses to internal and external stresses 
that might ultimately lead to cancer can be strongly 
influenced by p53. The universe of genes that are 
subject to direct control by p53 is much larger than 
originally anticipated based on previously established 
consensus sequences. Similarly, the number of known 
signalling pathways that respond to diverse cellular 
perturbations and lead to p53 activation is increasing. 
The integration of all these p53-inducing signals and  
p53-influenced activities is likely to affect the role of p53 
as a tumour suppressor in different tissues. There 
is considerable flexibility in what constitutes an RE 
and this may be augmented by cis-association with 
other regulators, as suggested by synergistic inter-
actions of p53 with ER. Many factors influence p53 
transcriptional responses at individual genes, includ-
ing cofactors that may be stress-specific, the strength 
of RE binding and the levels of p53 in response to 
stress. On a more general level, the influence of these  
factors in regulatory networks should be considered 
as analogue rather than binary, in the sense that  
instead of a simple on–off response (as for most 

components in regulatory networks) there can be  
considerable variation and flexibility in the transactivation 
response.

Although there has been substantial progress in iden-
tifying REs and understanding their interactions with 
p53, much remains to be done. For example, additional 
functional non-canonical REs need to be identified and 
investigated to develop rules for how REs are engaged 
by p53. Functional interactions between p53 and other 
master regulators are likely to affect the role of p53 as 
a tumour suppressor, as are SNPs in p53 REs or other 
components of the p53 regulatory system. Variations 
in p53-driven transcription between tissues and stress 
responses should also be characterized. The increasing 
dimensions of the p53 transcriptional network increases 
the number of potential therapeutic targets, which may 
provide greater opportunities for intervention strate-
gies focused on the modulation of wild-type or mutant 
p53 functions in cancer. The influence of individual 
and combined chemotherapeutic agents that target the 
p53 system (that is, RITA182 and Nutlins183) and mutant 
proteins (such as p53 reactivation and induction of mas-
sive apoptosis (PRIMA1)184 and the carbazole deriva-
tive PhiKan083 (Ref. 185)) remains to be addressed. 
Determining the relationship between expression lev-
els and responsiveness at canonical and non-canonical 
target sequences is important for evaluating the con-
sequences of cancer-associated p53 mutations, par-
ticularly those that retain transactivation capabilities. 
Because of the complexity and control of the universe 
of genes in the p53 master regulatory network, the 
role of p53 and target sequences in cancer and overall 
human biology remains a challenge even after 30 years 
of intense investigation.
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