
Thirty years ago, a ~53 kDa protein that interacts with 
the viral SV40 T‑antigen1–3 and is frequently detected at 
high levels in cancer cells4–6 was discovered, igniting the 
explosive field of p53 research. For almost a decade, p53 
was considered to be a tumour antigen with transforming 
capabilities. Only during the late 1980s was it revealed that 
p53 is in fact a tumour suppressor, and that the evidence 
for its supposed oncogenic functions had been errone‑
ously collected from tumour‑derived mutant clones7. 
Thus, the potential of mutant p53 to promote cancer was 
one of the earliest findings in the field of p53 research.

p53 (encoded by the human gene TP53) is a stress 
response protein that functions primarily as a tetrameric 
transcription factor which regulates a large number of 
genes in response to a variety of cellular insults, includ‑
ing oncogene activation and DNA damage. These signals 
activate p53 primarily through post‑translational modi‑
fications that result in augmented p53 protein level and 
transactivation activity. p53 bears the usual hallmarks 
of a transcription factor, with an amino‑terminal trans‑
activation domain, a core DNA‑binding domain (DBD) 
and carboxy‑terminal tetramerization and regulatory 
domains8. Activated p53 suppresses cellular transforma‑
tion mainly by inducing growth arrest, apoptosis, DNA 
repair and differentiation in damaged cells9. Accordingly, 
p53 function is almost always compromised in tumour 
cells, usually as a result of somatic mutations, which 
occur in approximately half of all human cancers and 
constitute a cornerstone in tumorigenesis10,11. The fre‑
quencies of reported TP53 mutations vary considerably 
between cancer types, ranging from ~10% (for exam‑
ple, in haematopoietic malignancies12) to 50–70% (for 
example, in ovarian13, colorectal14 and head and neck15 

cancers). Whereas somatic TP53 mutations contribute to 
sporadic cancer, germline TP53 mutations cause a rare 
type of cancer predisposition known as Li–Fraumeni 
Syndrome (LFS)16 (BOX 1). Importantly, both somatic and 
germline TP53 mutations are usually followed by loss of 
heterozygosity (LOH) during tumour progression, which 
suggests that a selective force inactivates the remaining 
wild‑type allele. Most TP53 mutations can be classified 
into two main categories according to their effect on the 
thermodynamic stability of the p53 protein8. These two 
mutation categories are commonly referred to as ‘DNA‑
contact’ and ‘conformational’ mutations. The first group 
includes mutations in residues directly involved in DNA 
binding, such as R248Q and R273H. The second group 
comprises mutations that cause local (such as R249S and 
G245S) or global (such as R175H and R282W) confor‑
mational distortions.

The majority of TP53 mutations observed in human 
cancers abrogate the sequence‑specific DNA‑binding 
activity towards the wild‑type p53 responsive element17. 
Moreover, these mutations usually confer the mutant 
protein with a dominant‑negative activity over the 
remaining wild‑type allele, a mechanism that involves hetero‑ 
oligomerization of the mutant protein with the wild‑type 
protein18–20. However, as the field of p53 research evolves, 
it is increasingly evident that many mutant p53 forms not 
only lose their tumour suppressive function and acquire 
dominant‑negative activities, but also gain new onco‑
genic properties that are independent of wild‑type p53. 
This notion, termed the ‘gain‑of‑function hypothesis’, 
received its first support when transfection of mutant p53 
into TP53‑null cells was shown to enhance their ability to 
form tumours in mice21–23. Since then, numerous studies 
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Loss of heterozygosity
(LOH). A genetic event at a 
particular locus heterozygous 
for a mutant allele and a 
wild-type allele in which  
the wild-type allele is either 
deleted (rendering the cell 
hemizygous for the mutated 
allele) or mutated (rendering 
the cell homozygous for the 
mutant allele).

When mutants gain new powers: 
news from the mutant p53 field
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Abstract | Ample data indicate that mutant p53 proteins not only lose their tumour 
suppressive functions, but also gain new abilities that promote tumorigenesis. Moreover, 
recent studies have modified our view of mutant p53 proteins, portraying them not as inert 
mutants, but rather as regulated proteins that influence the cancer cell transcriptome and 
phenotype. This influence is clinically manifested as association of TP53 mutations with poor 
prognosis and drug resistance in a growing array of malignancies. Here, we review recent 
studies on mutant p53 regulation, gain-of-function mechanisms, transcriptional effects and 
prognostic association, with a focus on the clinical implications of these findings.
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Missense mutation
A single base-pair substitution 
that results in the translation of 
a different amino acid at that 
position.

Transition
A mutation that results in a 
substitution of a purine for  
a purine or a pyrimidine for a 
pyrimidine.

Transversion
A mutation that results in a 
substitution of a purine for  
a pyrimidine or vice versa.

Aflatoxin B1
A potent mutagenic 
fungal-produced toxin. Human 
exposure to aflatoxin B1 
largely stems from Aspergillus 
spp. food contamination, which 
occurs primarily in eastern Asia 
and sub-Saharan Africa. 
Aflatoxin B1 promotes G→T 
transversions and is associated 
with a substitution of an 
arginine (AGG) to a serine (AGT) 
at TP53 codon R249, the most 
common TP53 mutation in 
hepatocellular carcinoma.

demonstrated a wide range of oncogenic properties for 
mutant p53 forms and provided key mechanistic insights 
to explain these phenomena (FIG. 1, TABLE 1). For instance, 
mutations in TP53 are associated with drug resistance in 
several malignancies and cell lines24–27, a phenomenon 
that may be partially attributed to transcriptional activa‑
tion of the multi‑drug resistance 1 (MDR1; also known as 
ABCB1) gene by mutant p53 (REFS 28,29) and to interfer‑
ence with apoptosis30. These and many other oncogenic 
properties of mutant p53 may underlie the abundant evi‑
dence for the association of mutations in TP53 with poor 
clinical outcome in a growing array of cancer types.

It is still debatable which property of mutant p53 is 
primarily selected for during cancer development. Is it 
the loss of wild‑type p53 function, the acquisition of 
dominant‑negative properties, the gain of new onco‑
genic functions or perhaps a combination of the above? 
In the following sections we review recent studies that 
shed light on the relevance of each of the properties of 
mutant p53 to tumorigenesis.

Lessons from the distribution of TP53 mutations
unlike most tumour‑suppressor genes, which typically 
undergo biallelic inactivation during carcinogenesis by 
deletions or truncating mutations, TP53 is frequently 
(74%) inactivated by a single monoallelic missense 
mutation (FIG. 2) that results in the formation of a stable 
full‑length protein, readily detected in human tumours 
(BOX 2)7. The vast majority of missense mutations are 
mapped to the DBD and usually abrogate its sequence‑
specific DNA‑binding activity10,31. Furthermore, almost 
a third of all missense mutations arise in six ‘hotspot’ 

residues10,32 (FIG. 2). The high proportion of missense 
mutations in TP53, as well as the existence of hotspot resi‑
dues, are frequently cited in favour of the gain‑of‑function 
hypothesis33. However, based on unbiased sequencing of 
13,000 genes from human tumour samples34, it seems 
that the incidence of missense mutations in TP53 is equal 
to the mean frequency of missense mutations in cancer 
cells35,36. Additionally, as the tetramerization domain of 
p53 resides at its carboxy‑terminus and participates in the 
hetero‑oligomerization between mutant and wild‑type 
p53, missense mutations are more likely than truncating 
mutations to produce a protein capable of binding and 
inactivating wild‑type p53. Hence, a dominant‑negative 
effect may represent an additional selective force for  
missense mutations.

The range of TP53 mutations is affected not only 
by selection processes, but also by intrinsic factors that 
differentially affect specific nucleotides and regions of 
the gene. For example, transitions at cpG sites are more 
frequent due to their high mutagenicity, and represent a 
key force shaping the distribution of TP53 mutations37. 
Notably, among all possible missense mutations involv‑
ing cpG transitions, only the few that result in a loss 
of transactivation activity are selected in cancers, which 
leads to the suggestion that loss of function is the domi‑
nant selective force in cancers36. Nevertheless, systematic 
data on the effect of cpG transitions on dominant‑ 
negative and gain‑of‑function properties of mutant 
p53 are scarce, and therefore these properties cannot 
be excluded as a tumorigenic driving force. Additional 
complexity is added by environmental carcinogens that 
leave their fingerprints on TP53 mutation patterns in 
several malignancies37,38. For example, the V157F and 
R158L substitutions, which result from G→T transversions, 
are more frequent in lung cancer compared with other 
cancers, perhaps due to the mutagenic effect of the 
tobacco‑smoke‑derived carcinogen benzo‑[a]‑pyrene38. 
Similarly, the R249S substitution is extremely common 
in liver cancer in some developing countries and has 
been associated with aflatoxin B1 food contamination38,39. 
In sum, the unique range of TP53 mutations is shaped by 
intrinsic and environmental factors, as well as complex 
and not fully understood selection processes in tumours. 
Additional lines of evidence, such as mouse models 
and molecular data, should be considered to assess the 
relative contribution of each property of mutant p53 to 
tumorigenesis.

Regulation and function of mutant p53
Updates from mouse models. Mutant p53 proteins often 
accumulate at extremely high levels in tumours40–42. In fact, 
immunohistochemical (IHc) detection of p53 in tumours 
usually indicates TP53 missense mutation and can pro‑
vide prognostic and predictive information43. By contrast, 
wild‑type p53 is usually maintained at low levels in nor‑
mal tissues due to its short half‑life44. These low levels are 
primarily maintained by the ubiquitin‑mediated degrada‑
tion of p53, a process regulated by the e3 ubiquitin ligase 
and the wild‑type p53 target gene MDM2 (also known as 
hDM2)45,46. A prominent notion was that the disruption 
of this negative feedback by mutations that abrogate the 

 At a glance

• The tumour suppressor p53 (encoded by TP53 in humans) functions primarily as a 
transcription factor, which, upon cellular stress signals, regulates a plethora of genes 
that promote cell cycle arrest, senescence, apoptosis, differentiation, DNA repair and 
other processes.

• TP53 is somatically mutated in the majority of sporadic human cancers, and 
mutations in TP53 are also associated with Li–Fraumeni Syndrome, a familial cancer 
predisposition syndrome.

• The majority of cancer-associated mutations in TP53 are missense mutations in its 
DNA-binding domain. These mutations usually lead to the formation of a full-length 
mutant protein (mutant p53) incapable of activating p53 target genes and 
suppressing tumorigenesis. Besides losing their wild-type activities, many p53 
mutants also function as dominant-negative proteins that inactivate wild-type p53 
expressed from the remaining wild-type allele. Moreover, some mutant p53 forms 
also acquire new oncogenic properties that are independent of wild-type p53, known 
as ‘gain-of-function’ properties.

• In the past three decades ample data were collected in support of the importance of 
mutant p53 gain-of-function properties for tumorigenesis. These data include cell 
culture studies that demonstrated the capability of mutant p53 to impinge on pivotal 
cellular regulatory networks, mouse models that established the ability of mutant p53 
to increase tumour aggressiveness and metastatic potential, as well as clinical studies 
that revealed associations between TP53 mutations and poor clinical outcome in a 
variety of malignancies.

• This Review describes recent advances in the research field of mutant p53, with an 
emphasis on the transcriptional effects of mutant p53, the expression signatures 
associated with TP53 mutations in vitro and in vivo and the diagnostic, prognostic and 
predictive value of TP53 mutations in human cancer.
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Focus formation assay
An in vitro assay used to 
measure the oncogenic 
potential of a gene. Usually, the 
gene of interest is delivered 
into animal cells which 
normally show contact 
inhibition. A bona fide 
oncogene grants the cells the 
ability to form areas of 
multi-layered densely-packed 
cells (called foci).

Penetrance
A measure of the proportion of 
individuals carrying a gene 
variation (for example, a 
mutation or single nucleotide 
polymorphism) that also 
express a phenotypical trait 
associated with that genetic 
variation (for example, a 
disease).

ability of p53 to transactivate MDM2 underlies the accu‑
mulation of mutant p53 (REFS 20,47–49). However, recent 
in vivo data challenge this hypothesis by demonstrating 
that mutant Trp53 knock‑in mice (Trp53 encodes mouse 
p53) do not accumulate mutant p53 in normal tissues50–52 
whereas mutant p53 levels are increased in most tumours, 
albeit not all53. Similarly, mutant p53 does not accumu‑
late in normal tissues from patients with LFS contrary 
to what occurs in tumours from these same patients33. 
Importantly, Mdm2–/– mice harbouring knock‑in Trp53 
mutants do accumulate mutant p53 in some normal tis‑
sues. Together, these findings demonstrate that TP53 
inactivating mutations alone are insufficient for the accu‑
mulation of mutant p53 and that additional events that 
occur during tumorigenesis are required to release mutant 
p53 from MDM2‑mediated degradation. Furthermore, in 
the presence of MDM2, the survival of mice homozygous 
for a hotspot Trp53 mutant is similar to that of Trp53−/− 
mice50–52 (although the mice expressing mutant p53 
develop more aggressive and metastatic tumours50). By 
contrast, in Mdm2–/– mice, the expression of mutant p53 
significantly reduces survival53, which demonstrates that 
mutant p53 accumulation is important for the execution 
of its gain‑of‑function potential. Additionally, although 
p53 mutants do not display gain‑of‑function properties 
in Mdm2+/+ mice in terms of overall survival, they do have 
a pronounced effect on the range of tumours that arise in 
these mice, with each p53 mutant associated with a dis‑
tinct tumour pattern50–52. These data indicate that whereas 
p53 inactivation is sufficient for tumour initiation at cer‑
tain tissues, other tissues are perhaps more resistant and 
require the gain‑of‑function activities of mutant p53 for 
their transformation.

Mdm2–/– mice are embryonic lethal, and deletion 
of both Trp53 alleles rescues this phenotype54,55. Thus, 
whether a heterozygous p53 mutant can rescue lethality 
of Mdm2–/– mice can be used as an assay to test its dom‑
inant‑negative activity over the wild‑type allele. Arguing 
against a dominant‑negative activity of mutant p53  
during development, the mouse hotspot mutant p53R172H 
failed in this in vivo rescue assay50. A similar picture 
is seen in the context of tumour suppression, where 
Trp53+/– mice and Trp53+/m mice (where ‘m’ stands 
for mouse hotspot mutants p53R172H or p53R270H) dis‑
play similar survival curves50,51, which suggests that 
endogenously expressed mutant p53 is not efficient at 
inactivating the remaining wild‑type allele. The com‑
plexity of mutant p53 regulation and function increases 

when considering experiments that use cultured mouse  
embryonic fibroblasts (MeFs) derived from mutant Trp53 
knock‑in mice. Mutant p53 accumulates in these MeFs 
although MDM2 levels are not reduced in comparison 
to MeFs expressing wild‑type Trp53, which indicates 
that factors independent of MDM2 levels regulate the 
accumulation of mutant p53 (REFS 51,52). Accordingly, 
the ability of MDM2 to bind and ubiquitylate p53 was 
shown to be reduced or abolished by some hotspot p53 
mutations47,52. Moreover, although certain conforma‑
tional p53 mutants are bound by MDM2 as effectively 
as wild‑type p53, MDM2‑dependent ubiquitylation is 
impaired48. Importantly, the accumulation of mutant p53 
in the MeFs derived from the knock‑in mice augments 
both its dominant‑negative and gain‑of‑function prop‑
erties (when analyzed in heterozygous and homozygous 
models, respectively). This is evident by increased growth 
rate, decreased contact inhibition and increased ability 
to cooperate with oncogenic hRAS in focus formation 
assays50. By contrast, chemotherapy‑induced cell‑cycle 
arrest and induction of p53 target genes Cdkn1a (which 
encodes p21) and Mdm2 were almost unaffected by the 
expression of mutant Trp53 in heterozygous MeFs51,52, 
arguing against a complete dominant‑negative effect. 
Finally, in support of the gain‑of‑function hypothesis, 
stable or conditional knockdown of endogenous mutant 
p53 in different human cell lines was shown to reduce 
their proliferation rate and chemoresistance in vitro as 
well as their ability to form tumours in nude mice56,57.

Therefore, the combined in vitro and in vivo data sug‑
gest that when some mutant p53 forms accumulate, their 
oncogenic properties are enhanced, prompting the care‑
ful consideration of p53‑activating drugs when treating 
tumours that express mutant p53. Furthermore, these data, 
together with the high incidence of LOH in tumours that 
harbour mutant p53, challenge the relevance of mutant 
p53 dominant‑negative effects for cancer development  
and support the gain‑of‑function hypothesis.

Old and new regulators of mutant p53. As the notion 
that accumulation of p53 mutants augments their onco‑
genic potential, the previously unstudied field of molecu‑
lar modulators of mutant p53 level and activity is gaining 
interest. cellular pathways that affect the folding, stabil‑
ity and localization of mutant p53 are being elucidated 
and their clinical importance appreciated.

One interesting example is the crosstalk between 
mutant p53 and the pivotal tumour‑suppressor PTeN, 
which enhances wild‑type p53 function by indirectly 
inhibiting MDM2 and directly binding to wild‑type p53 
(REF. 58). Recently, PTeN was suggested to exert onco‑
genic functions by enhancing the stability of mutant 
p53 (REF. 59). In fact, PTeN inhibited growth of glio‑
blastoma cell lines harbouring wild‑type p53, whereas 
in xenografts of cell lines expressing mutant p53, PTeN 
enhanced proliferation, survival and tumour formation 
in vivo. An opposite example is the tumour‑suppressor 
INK4A (encoded by the CDKN2A locus), which reduces 
wild‑type p53 levels through the e2F‑Rb axis60. When 
p53R172H knock‑in mice were crossed with Cdkn2a–/– 
mice, mutant p53 accumulated in normal tissues and the 

 Box 1 | Li–Fraumeni syndrome

Li–Fraumeni syndrome (LFS) is a rare autosomal-dominant highly penetrant cancer 
predisposition syndrome, proposed by Li and Fraumeni in 1969 (REFS 168,169).  
LFS is unique among cancer predispositions as it is not associated with site-specific 
tumours, but rather with a variety of tumour types occurring at a relatively early age169. 
The underlying genetic defect in most patients with LFS is a germline mutation in one 
of the alleles that encodes p53 (REF. 16), with an estimated penetrance of 90%–95%. 
The distribution of germline mutations in patients with LFS reflects that of sporadic 
tumours, with similar hotspot residues170. Another similarity between patients with LFS 
and individuals with sporadic cancer is the enhanced oncogenic potential of missense 
TP53 mutations compared with truncating and inactivating mutations171.
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mice developed tumours at an earlier age53. Therefore, 
loss of INK4A expression, a common oncogenic event, 
may also contribute to cancer development by stabilizing  
mutant p53.

Mutant p53 is known to interact with heat‑shock 
proteins such as HSP90 and HSP70 (REFS 61–64). In this 
context, some insights into the accumulation of mutant 
p53 in tumours and its phenotypic consequences were 
recently obtained. For instance, wild‑type and mutant 
p53 were shown to have opposite dependencies on the 
molecular chaperone HSP90. Whereas wild‑type p53 
accumulated following HSP90 inhibition, the protein 
level of mutant p53 was reduced. In line with the gain‑
of‑function hypothesis, mutant p53 destabilization upon 
HSP90 inhibition was accompanied by cell death65. 
Additionally, recent studies investigated the involvement 
of HSP90, HSP70 and the ubiquitin‑ligase cHIP (also 
known as STuB1) in the regulation of mutant p53 sta‑
bility49,66, demonstrating that HSP90 inhibition increases 
the unfolded fraction of the mutant p53 molecules, which 
are then bound by HSP70 and marked for degradation 
by cHIP. Because HSP90 is frequently over‑activated 
in tumours67, the dependency of mutant p53 on HSP90 
may account for its tumour‑specific accumulation and  
underlie the therapeutic potential of HSP90 inhibitors68.

The subcellular localization of mutant p53 is 
another parameter that affects its oncogenic proper‑
ties. Although mutant p53 usually accumulates in the 
nucleus of cancer cells43,69,70, in some cases it localizes 
to the cytoplasm, depending on the type of mutant, 
the cellular context and a variety of stress signals that 
modulate p53 localization48,69. As with wild‑type p53, 
MDM2‑dependent and MDM2‑independent ubiq‑
uitylation seems to regulate nuclear export of p53 
mutants, and especially of conformational mutants, 
probably by exposing their c‑terminal nuclear export 
signal48,71. Interestingly, a recent study demonstrated 
that cytoplasmic p53 mutants can inhibit autophagy 
in cancer cells72. For each of 22 mutant p53 forms 
analyzed, a unique localization pattern was observed, 
from almost exclusively nuclear (for example, p53R282W) 
to almost exclusively cytosolic (for example, p53R273H). 
On the single‑cell level, all p53 mutants were com‑
petent at inhibiting autophagy when localized to the 
cytosol, although the inhibitory effect on the entire cell 
population was much more pronounced for mutants 
with predominantly cytosolic localization. chronic 
suppression of autophagy was demonstrated to facili‑
tate tumorigenesis, and several proteins that promote 
autophagy are considered tumour suppressors73. 
Hence, inhibition of autophagy may constitute a new 
oncogenic property of p53 mutants, and highlights the 
importance of subcellular localization of p53 mutants 
in tumours.

Mutant p53 gain-of-function properties
Interaction with p63 and p73. Since the discovery 
of mutant p53 oncogenic potential21–23,74,75, numer‑
ous gain‑of‑function properties were demonstrated 
and a variety of underlying mechanisms were pro‑
posed7,20,76,77 (FIG. 1). However, recent findings not only 
broaden the array of gain‑of‑function properties, but 
also highlight their relevance to tumorigenesis. A piv‑
otal gain‑of‑function mechanism is the ability of com‑
mon p53 mutants to bind and inactivate p53 family 
members, p63 and p73 (REFS 78,79). These transcrip‑
tion factors have key roles during development and 
can be expressed as several splice variants with distinct 
and even antagonistic functions80. Importantly, there is 
a substantial amount of data to support the role of the 
transactivation‑potent variants of p63 and p73 in sup‑
pressing tumorigenesis80. Moreover, analysis of mouse 
models demonstrated that p63 and p73 can partially 
compensate for deletion of Trp53 as Trp53+/–Trp63+/– 
mice and Trp53+/–Trp73+/– mice have reduced survival 
and increased metastatic rate compared with Trp53+/– 
mice81. Therefore, inhibition of p63 and p73 function 
is considered a key mechanism for mutant p53 gain 
of function82,83. evidence supporting this notion has 
come from the recently developed knock‑in mouse 
model in which p53R172H was shown to bind p63 and 
p73 in tumour‑derived cell lines, consequently inhibit‑
ing their abilities to induce cell‑cycle arrest and sup‑
press focus formation50. The capacity of different p53 
mutants to bind p73 was shown to be significantly 
influenced by the site of mutation as well as by the 

Figure 1 | Selected oncogenic properties of mutant p53 and their underlying 
mechanisms. The inner circle (shaded blue) represents oncogenic phenotypes 
associated with the activities of mutant p53 proteins. The outer circle depicts key 
mechanistic properties of p53 mutants that underlie the phenotypes listed in the inner 
circle. Note that each of the phenotypic effects can be attributed to almost each of the 
mechanistic properties; hence the inner blue circle can be freely rotated. ATM, ataxia-
telangiectasia mutated; NF-κB, nuclear factor-κB; VDR, vitamin D receptor.
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Single nucleotide 
polymorphism
(SNP). A germline variation in a 
single nucleotide that exists at 
a frequency of at least 1% in 
the general population.

single nucleotide polymorphism at codon 72 (REF. 84). 
Moreover, the p73‑binding capacity is correlated 
with the ability of p53 mutants to protect cells from 
chemotherapeutic agents, and, accordingly, with less 
favourable response to chemo‑radiotherapy in patients 
with head and neck cancer84. Therefore, targeting the 
interaction of mutant p53 with p63 and p73 seems a 
promising strategy for cancer therapy. Indeed, short 
peptides that disassemble p53R175H from p73 restore 
the activity of p73 and re‑sensitize cells that harbour 

mutant p53 to chemotherapy85. Similarly, the small 
molecule ReTRA, which interferes with mutant‑
p53–p73 interaction, hinders the growth of cells that 
express mutant p53 and their ability to form tumours 
in mice86.

DNA binding, transcriptional regulation and more. 
Inactivation of p63 and p73 seems to account for a large 
proportion of the oncogenic properties of p53 mutants. 
Yet, there are other well‑characterized gain‑of‑function 

Table 1 | Selected list of genes that are transcriptionally regulated by mutant p53

Phenotypic effects Corresponding gene(s) effect refs

Enhanced proliferation NF-Y target genes (such as CCNA, CCNB2, Cdk1, CdC25C) Upregulated 92

MAP2K3 (mitogen-activated protein kinase kinase 3) Upregulated 57

MAd1L1 (MAD1 mitotic arrest deficient-like 1) Upregulated 172

fos , also known as c-fos Upregulated 173

PCNA (proliferating cell nuclear antigen) Upregulated 174

MyC, also known as c-myc Upregulated 100

E2f5 Upregulated 95

AsNs (asparagine synthetase) Upregulated 108

ARHGEf2 (Rho/Rac guanine nucleotide exchange factor (GEF) 2; also known as GEF-H1) Upregulated 175

Id2 (inhibitor of DNA binding 2) Downregulated 176 

MCM6 (minichromosome maintenance complex component 6) Upregulated 95

IGf1R (insulin-like growth factor 1 receptor) Upregulated 177

CXCL1 (CXC-chemokine ligand 1; also known as GRo1) Upregulated 178

Inhibition of apoptosis  
and/or chemoresistance

EGR1 (early growth response 1) Upregulated 179

ATf3 (activating transcription factor 3) Downregulated 180 

LGALs3 (lectin, galactoside-binding, soluble; also known as Galectin-3 Upregulated 181

fAs , also known as Cd95/APo-1 Downregulated 182 

MsT1 (macrophage stimulating 1; also known as MsP) Downregulated 183 

BCL2L1, also known as bcl-xL Upregulated 57

dHCR24 (24-dehydrocholesterol reductase; also known as seladin-1) Upregulated 57

NfkB2 (nuclear factor-κB2) Upregulated 95

ABCB1 (ATP-binding cassette, sub-family B (MDR/TAP), member 1; also known as MDR1) Upregulated 28

IGf2 (insulin-like growth factor 2) Upregulated 184

BAG1 (BCL2-associated athanogene) Upregulated 185

dUT (deoxyuridine triphosphatase ; also known as dUTPase) Upregulated 186

Other effects TGfBR2 (transforming growth factor, beta receptor II) Downregulated 187 

ARHGDIA (Rho GDP dissociation inhibitor (GDI) α) Upregulated 57

RANGAP1 (Ran GTPase activating protein 1) Upregulated 57

PXN (paxillin) Upregulated 57

kIf20A (kinesin family member 20A) Upregulated 57

ALoX15 (arachidonate 15-lipoxygenase) Upregulated 188

ribosomal proteins RPL37, RPLP1, and RPs2 Upregulated 189

Limitless replication TERT (telomerase reverse transcriptase) Upregulated 108

Invasiveness, inflammation 
and angiogenesis

NFκB target genes (such as CXCL1, interleukin 1β (IL1B), IL6, IL8, MMP3) Upregulated *

WIsP2 (WNT1 inducible signalling pathway protein 2; also known as cyclin 5) Upregulated 190

VEGfA (vascular endothelial growth factor A) Upregulated 191

*Rotter V. et al., unpublished data. CDC25C, cell division cycle 25C; CDK1, cyclin dependent kinase 1; MMP3, matrix metalloproteinase 3.
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mechanisms, which can be roughly categorized into two 
groups, depending on whether they involve DNA binding 
and modulation of gene transcription by mutant p53.

Although two thirds of missense mutations in the 
DBD, including all hotspot mutations, abrogate the 
ability of p53 to activate target genes17, modulation of 
gene transcription by mutant p53 is well documented 
as an important gain‑of‑function mechanism7,76,77. The 
earliest evidence emerged with the demonstration that 
a functional transcription‑activation domain of p53 is 
required for mutant‑p53‑dependent activation of MDR1 
and protection from drug‑induced apoptosis87,88. Since 
then, the transcriptional regulation of numerous genes 
has been implicated in mutant p53 gain of function (for 
reviews see REFS 7,76,77) (TABLE 1). However, a unifying 
mechanism for the selectivity of mutant p53 to certain 
genes is still missing owing to, among other reasons, the 
lack of consensus DNA sequence among genes regulated 
by mutant p53 and the variability in the identity of genes 
affected by different p53 mutants. A possible solution is 
provided by recent in vitro data, demonstrating that several 
p53 mutants, although defective in sequence‑specific DNA 
binding, retain the ability to bind specific non‑B  
DNA structures with high affinity89. consistent with 
the diverse gene specificity associated with different 
p53 mutants, various DNA structures are bound by  
different mutants through distinct mechanisms and 
with different affinities. Supporting these data, DNA 
sequences bound by mutant p53 are rich in repetitive 
elements and other sequences with a high likelihood 
of adopting non‑B conformations90,91. Therefore, the 

specificity of mutant p53 to certain regulatory sequences 
is perhaps mediated through preferential binding to 
structural DNA motifs and not consensus sequences.

Another well‑established mechanism for gene‑
specific transcriptional regulation is the interaction of 
mutant p53 with sequence‑specific transcription factors, 
which results in either augmentation or attenuation of 
their activity. Besides p63 and p73, well‑characterized 
transcription factors that interact with mutant p53 are 
SP1 and eTS1, which also interact with wild‑type p53. 
Interestingly, the effects of mutant and wild‑type p53 on 
SP1 and eTS1 are antagonistic, suggesting that additional 
but distinct co‑factors are recruited by mutant p53 and 
wild‑type p53 (REF. 76). Similarly, the transcription factor 
NF‑Y, which interacts with wild‑type p53, was recently 
demonstrated to interact with the p53R175H and p53R273H 
hotspot mutants92. NF‑Y binds the ccAAT motif and 
regulates numerous cell‑cycle‑associated genes. Mutant‑
p53–NF‑Y complexes are recruited to ccAAT‑box‑
containing promoters upon treatment with adriamycin 
(also known as doxorubicin), and this results in acti‑
vation of NF‑Y target genes such as cyclins and cyclin‑
dependent kinases (cDKs), and, consequently, increased 
DNA synthesis. As opposed to wild‑type p53, which 
binds the histone deacetylase HDAc1 in adriamycin‑
treated cancer cells, mutant‑p53–NF‑Y promoter‑bound 
complexes switch binding partners from HDAc1 to the 
histone acetyltransferase p300 following adriamycin 
treatment, and this results in increased histone acetyla‑
tion and transcription of NF‑Y target genes92. In this 
example, therefore, gene‑specific regulation by mutant 
p53 is achieved through interaction with NF‑Y, and the 
opposite effects of wild‑type and mutant p53 on NF‑Y 
target genes are explained by recruitment of antagonis‑
tic epigenetic modifiers. Importantly, mutant‑p53–NF‑Y 
interactions may underlie the growth‑promoting prop‑
erties of mutant p53 as well as the insensitivity of some 
mutant‑p53‑expressing tumours to DNA damage24,25,27.

Another fascinating example is the interaction of 
p53R175H with the transcription factor vitamin D recep‑
tor (VDR). By analyzing chromatin immunoprecipita‑
tion (chIP)‑on‑chip data, the VDR response element 
was found to be over‑represented in promoters bound 
by mutant p53. Apparently, p53R175H physically binds 
VDR and is recruited onto VDR target gene promoters, 
resulting in their deregulation. Accordingly, vitamin D 
treatment, which leads to cell death in cells that express 
wild‑type p53, induces survival in cells expressing mutant 
p53 (REF 93). Because vitamin D analogues are being tested 
as cancer therapeutic agents, this observation underlies 
the importance of identifying p53 mutations in tumours, 
which may reverse the therapeutic effect of vitamin D.

Finally, recent data implicate mutant p53 in activating 
genes involved in inflammation such as those encoding 
cytokines, chemokines and extracellular matrix modula‑
tors. Interestingly, whereas conformational mutants only 
inhibit the ability of wild‑type p53 to repress the expres‑
sion of these genes, DNA‑contact mutants display a gain 
of function, whereby they induce the transcription of 
inflammatory genes through the activation of the nuclear 
factor‑κB (NF‑κB) pathway (V.R. unpublished data). 

Figure 2 | Distribution of TP53 somatic mutations according to the IarC TP53 
Mutation Database. a | Pie chart representing the different tumour-derived mutation 
types reported in the IARC TP53 Mutation Database. b | The distribution of reported 
missense mutations along the 393 amino-acid sequence of p53. The six most common 
hotspot mutations are highlighted in yellow for DNA-contact mutations, green for locally 
distorted mutants and blue for globally denatured mutants. The domain architecture of 
p53 is aligned below. Note that the depicted enrichment of mutations in the 
DNA-binding domain (DBD) is probably an overestimation as in many studies only  
the core domain exons of TP53 are sequenced, thus, mutations outside this region  
are overlooked. PR, proline-rich domain; Reg, carboxy-terminal regulatory domain;  
TA, transactivation domain; Tet, tetramerization domain. Data derived from the IARC 
TP53 Mutation Database version R13 (November 2008)32.
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Similarly, mutant p53 was shown to enhance the NF‑κB 
response to tumour necrosis factor α (TNFα) in cancer 
cells94, and to transcriptionally activate NFKB2 (REF. 95). 
These data combined suggest that TP53 mutations, by 
antagonizing the ability of wild‑type p53 to inhibit the 
expression of inflammatory genes and by activating  
the pro‑inflammatory NF‑κB pathway, may promote 
tumorigenesis in the context of chronic inflammation.

As mentioned earlier, several gain‑of‑function prop‑
erties of p53 mutants are mediated not through DNA 
binding, but rather through modulation of non‑tran‑
scriptional processes. A recent study revealed that the 
hotspot DNA‑contact mutants p53R248W and p53R273H can 
bind MRe11, an upstream component of the ataxia‑ 
telangiectasia mutated (ATM)‑dependent DNA‑damage 
response pathway and, consequently, inhibit the cellu‑
lar response to DNA double‑stranded breaks52. The 
apparent phenotypes in mutant Trp53 knock‑in mice 
are augmented genetic instability, increased levels of 
interchromosomal rearrangements in pre‑malignant 
thymocytes and development of lymphomas, which 
were not observed in Trp53‑null mice52. The clinical 
implications of this finding are perhaps the enhanced 
resistance of some tumours harbouring mutant p53 to 
cancer therapies that induce double‑stranded breaks27 

and the observed association between mutant p53 and 
chromosomal instability in human cancers96,97.

Taken together, it seems that modulation of gene tran‑
scription and interference with pivotal signalling path‑
ways are important mechanisms by which p53 mutants 
exert their oncogenic functions. As discussed in the fol‑
lowing section, the interaction of mutant p53 with DNA, 
with DNA‑binding proteins and with the DNA‑damage 
response network may account for the emerging tran‑
scriptional signatures associated with TP53 mutations  
in human malignancies.

Gene signatures associated with TP53 mutations
Gene‑expression signatures can be used to develop 
genomic tests that may provide better predictions of 
clinical outcome than the traditional clinical and patho‑
logical standards98. Whole‑genome expression profiles of 
tumours provide more information than histopathologi‑
cal examination and other classical biomarkers, and ena‑
bles the sub‑typing of tumours into distinct classes with 
different prognostic characteristics, and, importantly, 
with varying responses to therapeutic drugs. Therefore, 
expression signatures afford opportunities to match 
therapies to individual patients99.

When analyzing genome‑wide expression profiles 
across different in vitro studies, it is hard to find common 
signatures associated with TP53 mutations, probably 
owing to variations in the type of mutant analyzed, the cel‑
lular system and other technical variables. The expression 
profiles of human tumours are even more heterogeneous 
owing to variability in the patients’ background, type of 
TP53 mutation, TP53 LOH and the proportion of contam‑
inating stroma. Accordingly, widely recognized mutant 
p53 target genes (such as MDR1 (REF. 28) and MyC100) 
are rarely found in these signatures. However, some pat‑
terns begin to emerge, even when the effects of different 
p53 mutants are collectively evaluated. For example, an 
expression signature consisting of 95 genes that were uni‑
versally modulated by four different hotspot mutants in 
prostate cancer cells was recently discovered101. Similarly, 
three hotspot mutants ectopically expressed in TP53‑null 
lung cancer cells induce a common gain‑of‑function tran‑
scriptional signature comprising more than 100 genes95,102. 
These results indicate common transcriptional activities 
for different p53 mutants, and provide a basis for the asso‑
ciation of TP53 mutations with transcriptional signatures 
in human tumours. Accordingly, expression signatures 
associated with TP53 mutations were recently identi‑
fied using large sets of breast cancer samples. Specifically, 
strong association was found between TP53 mutations and 
expression signatures that were previously demonstrated 
to predict patient survival103–105. Tumours with TP53 muta‑
tions were mostly classified into the basal‑like or eRBB2‑
like subgroups. Tumours from the basal‑like subgroup 
display an expression profile characteristic of breast basal 
epithelium, including high expression of keratin 5 and lam‑
inin, and are usually oestrogen receptor‑ and progesterone 
receptor‑negative. High expression of genes associ‑
ated with oncogenic ERBB2 amplification characterizes 
tumours from the eRBB2‑like category. Importantly, the 
basal‑like and eRBB2‑like subgroups are associated with 

Box 2 | Functional impact of TP53 mutations

The phenotypic effects of TP53 mutations can be classified into three non-mutually 
exclusive groups7,35:

First, most mutations observed in human tumours abrogate or attenuate the binding of 
p53 to its consensus DNA sequence and, consequently, impede the transcriptional 
activation of p53 target genes17. In genetics, these mutations can be defined as 
hypomorphic or amorphic, for partial or complete loss of function, respectively. Loss of 
function (LOF) is frequent among missense mutants, but is particularly relevant to 
truncating, splicing and nonsense mutations, as well as to gene deletions.

Second, most missense mutations, but usually not the other types of mutations, also 
produce a full-length mutant p53 capable of inhibiting, to varying degrees, the function 
of the wild-type protein encoded by the second allele. This (antimorphic) 
dominant-negative (DN) effect is achieved by oligomerization of the mutant and 
wild-type proteins, forming a heterotetramer defective in sequence-specific DNA 
binding18-20.

Finally, several mutations were shown to confer mutant p53 with new functions that are 
independent of wild-type p53. These (neomorphic) gain-of-function (GOF) properties can 
be experimentally demonstrated in the absence of a functional wild-type p53. The first 
such experimental settings 
used overexpression of 
mutant p53 in TP53-null 
cells21-23. More advanced and 
physiological systems 
include knockdown of 
endogenous mutant p53 in 
cell lines that do not express 
wild-type p53 (REFS 56,57) 
or comparison of mutant 
Trp53 knock-in mice  
with Trp53-null mice50-52. 
Most gain-of-function 
properties are believed to 
stem from binding of mutant 
p53 to cellular proteins such 
as transcription factors and, 
consequently, alteration in 
their activity.
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a significantly higher relative risk of mortality compared 
with the luminal group, which includes almost exclusively 
tumours expressing wild‑type TP53 (REF. 104). These find‑
ings suggest that p53 mutants can directly or indirectly 
induce specific gene signatures with significant prognos‑
tic value. Moreover, based on large datasets from breast 
cancer samples, expression signatures that distinguish 
between tumours that express wild‑type p53 and mutant 
p53 were identified105,106. These signatures outperform 
sequence‑based assessment of TP53 mutations in predict‑
ing survival and therapeutic response. They can also relia‑
bly distinguish between tumours with wild‑type TP53 and 
mutant TP53 in independent datasets derived from breast 
or liver cancer samples. Therefore, expression signatures 
associated with mutant p53 may be useful clinical tools for 
prognosis and for prediction of treatment response.

A common denominator of mutant‑p53‑associated 
expression signatures both in cell lines and in human 
cancers is the high percentage of proliferation‑associated 
genes95,102–110. This finding probably reflects an increased 
proliferation rate of cells expressing mutant p53 com‑
pared with wild‑type TP53 and TP53‑null cells. In sup‑
port of this notion is the observation that in numerous 
cancer types, mutations in TP53 are strongly associated 
with a high Ki‑67 score37 — a commonly used marker 
of proliferation. Importantly, high expression of the 
proliferation‑associated gene cluster, known as the pro‑
liferation signature111, is the most frequent observation 
made when comparing expression profiles of tumour 
samples with normal tissues or when comparing high‑
grade tumours with low‑grade ones111. Additionally, 
in the vast majority of cases, high expression of the 
proliferation signature is associated with poor clinical 
outcome111. The proliferation signature is comprised 
mainly of proliferation‑associated genes that participate 
in the core processes of the cell cycle, including DNA 
replication, spindle assembly and spindle checkpoint, 
chromosome segregation and other mitotic processes. 
Accordingly, many of these genes are regulated by cell‑
cycle‑associated transcription factors such as the e2f 
family and NF‑Y111–113.

Several mechanisms could underlie the association 
between TP53 mutations and high expression of the 
proliferation signature in tumours. First, wild‑type p53 
is probably inactivated in most mutant‑p53 tumours, 
either by a dominant‑negative mechanism or by LOH. 
As wild‑type p53 can repress the expression of the pro‑
liferation signature by inhibiting the activity of e2F1 and  
NF‑Y113–115, its inactivation should alleviate this effect 
and, consequently, upregulate the proliferation signa‑
ture. A recent study supported this mechanism by estab‑
lishing isogenic colorectal cancer cell lines differing in 
their TP53 status110. Microarray analysis revealed that 
upon γ‑irradiation, a large set of proliferation‑associ‑
ated genes was downregulated in wild‑type TP53 cells; 
whereas in cells expressing mutant p53 and in TP53‑
null cells, this downregulation was abolished. Similarly, 
Troester et al. identified a gene signature enriched with 
proliferation‑associated genes that is associated with both 
TP53 mutations in primary breast cancers and wild‑type 
p53 knockdown in breast cancer cell lines105. These data 

imply that the upregulation of the proliferation signature 
in mutant p53 tumours stems from wild‑type-p53 loss 
of function. Alternatively, induction of cell‑cycle genes 
may result from mutant p53 gain‑of‑function proper‑
ties, including the ability of several mutants to enhance 
the activity of NF‑Y92 and e2F1 (REF. 116), and to tran‑
scriptionally activate various proliferation‑associated 
genes (TABLE 1). Accordingly, in addition to their ability to 
interfere with wild‑type-p53‑mediated cell‑cycle arrest, 
many p53 mutant proteins can also actively promote pro‑
liferation7,56,108. Finally, several hotspot p53 mutants were 
recently shown to repress wild‑type p53 target genes in 
TP53‑null cells, demonstrating a new gain‑of‑function 
activity117. As several of these repressed genes encode 
pivotal cell‑cycle inhibitors (such as p21 and growth 
arrest and DNA‑damage‑inducible α (GADD45α)), their 
repression may increase proliferation rate and, in turn, 
induce the proliferation signature. In sum, the induction 
of the proliferation signature may account, at least par‑
tially, for the increased aggressiveness of tumours express‑
ing mutant p53. However, to elucidate the mechanistic 
association between TP53 mutations and the proliferation 
signature, large‑scale studies combining gene profiling, 
IHc, patient data and molecular investigations of crucial 
players in the p53 pathway should be performed.

TP53 and prognosis, prediction and diagnosis
Inconsistent data regarding the association of TP53 muta‑
tions with survival and drug response have led to a debate 
over the prognostic and predictive values of TP53 status 
in cancer, and delayed the translation of the assessment 
of TP53 status into the clinic37. A main reason for the 
inconsistency is that until recently most studies used IHc 
detection of p53 accumulation in tumour samples as a 
marker for TP53 mutations. However, the assignment of 
TP53 status to a tumour sample is often inaccurate when 
IHc is solely used, as many tumours with TP53 muta‑
tions do not accumulate mutant p53; this is especially the 
case for frameshift, nonsense and splicing mutations37,43. 
Additionally, not all tumours with missense TP53 muta‑
tions are IHc positive50,104,118. Moreover, few tumours 
accumulate a functional wild‑type p53 due to persistent 
stress signals37, and some tumours inactivate wild‑type 
p53 function by mutation‑independent mechanisms, 
such as MDM2 amplification or deregulation of upstream 
or downstream components of the p53 pathway11,33,37,43. 
Finally, lack of standard protocols and cut‑off thresh‑
olds for IHc detection of p53 increases the inter‑study 
variability33,37.

In the past decade, more and more studies have accu‑
mulated, in which TP53 status was accurately assessed by 
gene sequencing or related methods. This trend gener‑
ated more reliable associations between TP53 mutational 
status and clinical properties, with the general trend 
being that TP53 mutations are associated with poor 
overall and disease‑free survival, as well as with  
poor drug response37. However, many studies still report 
lack of such associations, and few report opposite trends. 
As depicted in FIG. 3, it seems that in malignancies 
involving the breast, head and neck, bladder, colorectum 
and the haematopoietic system, 65%–90% of studies find 

R E V I E W S

708 | OcTOBeR 2009 | VOLuMe 9  www.nature.com/reviews/cancer

R E V I E W S

© 2009 Macmillan Publishers Limited. All rights reserved

http://www.uniprot.org/uniprot/Q01094
http://www.uniprot.org/uniprot/Q5TCA7


Nature Reviews | Cancer

Good outcome (n=4)
Not associated (n=32)
Poor outcome (n=87)

N
um

be
r o

f 
st

ud
ie

s

0

5

10

15

20

25

30

Bl
ad

de
r

Br
ea

st

C
ol

or
ec

ta
l

H
ea

d 
an

d 
ne

ck

H
ae

m
at

op
oi

et
ic

Br
ai

n

Lu
ng

O
va

ry

TP53 mutations associated with poor prognosis; whereas 
in brain, lung and ovarian cancers the picture is more 
complex, since in roughly half of the studies no significant 
association between TP53 mutations and clinical outcome 
is found and in rare cases TP53 mutations are associ‑
ated with good prognosis. Similar data are available for  
additional malignancies in the IARc TP53 database32.

Several clinical studies that compared IHc‑based to 
sequencing‑based assessment of TP53 status found sig‑
nificant prognostic values only for the sequencing‑based 
classification119,120. However, given that accumulation of 
mutant p53 can enhance both its dominant‑negative and 
gain‑of‑function properties, combining IHc and gene‑
sequencing analysis may be a more reliable prognostic 
tool121,122. Indeed, recent studies revealed that mutant TP53 
tumours that are IHc positive have a worse prognosis 
than IHc‑negative mutant p53 tumors122,123. In addition, 
some studies could demonstrate better prognostic values 
when their data were stratified not only according to the 
mere presence of TP53 mutations, but also according to 
the predicted or experimentally measured effect of these 
mutations on p53 structure or function124–126, the exon or 
functional domain in which the mutation resides37,118,127–132 
and even the specific mutated residue37,129,131. Similarly, a 
number of studies used multi‑parameter analyses integrat‑
ing, in addition to TP53 mutation analysis, other data such 
as the status of additional tumour suppressors and onco‑
genes, global or local measurement of genomic aberra‑
tions, TP53 and MDM2 single nucleotide polymorphisms, 
and other clinicopathological factors129,133–139. These types 

of analyses can sometimes generate better and more trans‑
latable prognostic tools and, in addition, may shed light 
on the molecular mechanisms that underlie the oncogenic 
effect of TP53 mutations.

Regarding the question raised earlier concerning 
which of the properties of mutant p53 is selected dur‑
ing tumorigenesis it seems that the clinical data do not 
clearly support one specific mechanism, perhaps imply‑
ing that mutant p53 loss‑of‑function, dominant‑negative 
and gain‑of‑function properties are all important for 
tumorigenesis in humans. For example, in a large‑scale 
study that analyzed 1,794 patients with breast cancer, 
evidence for all three mechanisms were found129. First, 
specific hotspot mutations (such as R248W and muta‑
tions at codon 179) were associated with worse prognosis 
compared with other DBD mutations, suggesting the 
involvement of a gain‑of‑function mechanism. However, 
DBD missense mutations were associated with a slightly 
better prognosis than truncating mutations, implying the 
selection of loss of function and opposing the notion of 
gain of function. Finally, DBD missense mutations had 
worse prognosis than non‑DBD missense mutations. 
complementary yeast‑based data demonstrated that 
DBD mutants are more likely to inhibit wild‑type p53 
than non‑DBD mutants140, which leads to the suggestion 
that selection of a dominant‑negative trait is in play36. 
Additional large‑scale and meta‑analysis studies are nec‑
essary to provide sufficient statistical power to assess the 
prognostic value of individual TP53 mutations in breast 
cancer, as well as in other malignancies.

In the past decade considerable progress has been 
made in the development of detection methods for TP53 
mutations and in their practical implementation (for 
comparison of TP53 mutation screening and identifica‑
tion see REF 33). For instance, several oligonucleotide 
microarray‑based methods were developed for rapid 
and accurate detection of TP53 mutations93,141–144. using 
these technologies, together with the advancement made 
in DNA‑sequencing applications, large‑scale mutational 
studies are becoming more feasible, and may facilitate 
bench‑to‑bedside transition. Additionally, many studies 
have demonstrated the possibility to obtain clinical data 
when analyzing TP53 status using patients’ blood, either 
by sequencing circulating free DNA from the plasma37,  
or by detection of the p53 protein or p53‑specific anti‑
bodies in the serum145–148. Moreover, TP53 mutations 
have been detected in additional types of body fluids 
and excretions such as saliva (in oral cancer), urine (in 
bladder cancer), sputum (in lung cancer)37 and oth‑
ers149,150. Therefore, in addition to the prognostic value of 
TP53 mutations, these possibilities may help to translate 
the assessment of TP53 status into diagnostic applica‑
tions. This is particularly relevant for early diagnosis of 
malignancies in which TP53 mutations occur relatively 
early during tumorigenesis, which is the case with many 
carcinogen‑induced cancers, as well as for detection of 
tumour relapse37. Notably, whether mutations in TP53 
represent early or late events during tumorigenesis is still 
debatable, and probably depends primarily on the cancer 
type. Nevertheless, TP53 aberrations can be detected in 
pre‑malignant lesions found in, for example, breasts151,152 

Figure 3 | association of TP53 mutations and clinical 
outcome in selected cancer types. The chart 
summarizes the main conclusions of studies that assess 
the association of TP53 mutations and clinical outcome 
(overall survival, disease-free survival or drug response). 
Only studies that analyzed TP53 mutations by gene 
sequencing or related methods and with cohorts > 50 
patients were considered. Only cancer types for which > 8 
studies were available are presented. See Supplementary 
information S1 (table) for detailed list of references. Data 
derived from the IARC TP53 Mutation Database version 
R13 (November 2008)32.
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and oral cavities153,154, demonstrating the role of mutant 
p53 in tumour initiation. An apparent controversy is the 
lack of mutant p53 gain‑of‑function effect on survival and 
its moderate influence on the overall tumour incidence 
in knock‑in mice (when comparing Trp53+/m mice with 
Trp53+/– mice)50–52, which may imply that TP53 muta‑
tions are not a major driving force in tumour initiation, 
at least in most tissues. However, as these mice grow in 
an environment almost free of mutagens, they may not 
constitute a flawless model for human tumorigenesis. As 
discussed earlier, an acquired TP53 mutation may not 
have a strong oncogenic effect without the conditions 
required for accumulation of mutant p53. In humans, 
who are exposed to a variety of environmental mutagens, 
mutant p53 is more likely to accumulate, and may bet‑
ter fulfil its oncogenic potential in initiating tumours. 
This is supported by the finding that germline TP53 mis‑
sense mutations in LFS patients are associated with an 
earlier age of tumour onset than loss‑of‑function TP53  
alterations (such as deletions)155.

A large proportion of clinical studies that assessed 
TP53 status by gene sequencing have focused only on the 
central part of the coding region (the DBD). Although 
almost all missense mutations are mapped to this area, 
a few missense mutations occur outside the DBD, and 
other types of mutations (such as nonsense, frameshift 
and splicing mutations) are more equally distributed, 
leading to misclassification of 10%–20% of cases37,43. 
Notably, the carboxy‑ and amino‑termini may be impor‑
tant for the oncogenic functions of mutant p53, as they 
regulate its accumulation, transactivation activity87, 
structure‑specific DNA‑binding89, subcellular localiza‑
tion70–72 and gain‑of‑function properties88,156. Moreover, 
with the appreciation of the importance of post‑tran‑
scriptional gene regulation in tumorigenesis, and, 
specifically, the key roles of microRNAs in cancer devel‑
opment157, previously ignored mutations in untranslated 
regions of TP53 should be analyzed for their potential 
effect on the protein level of mutant p53.

Conclusions and some unanswered questions
Despite the immense knowledge on p53 involvement 
in tumorigenesis, its translation to clinical use has yet 
to be accomplished. Nevertheless, it seems that recently 
collected data may facilitate the implementation of 
TP53 mutational analysis into clinical practice as the 
significance of this analysis for early tumour diagno‑
sis, relapse detection, prognosis and prediction of drug 
response is gradually realized. Furthermore, in recent 
years, several p53‑based therapeutic approaches have 
been developed, including compounds that reactivate 
specific p53 mutants, non‑genotoxic p53‑activating 
drugs, p53 gene‑delivery approaches and more158. New 
high‑resolution structural studies on the deleterious 
effects of cancer mutations and their reversal by sup‑
pressor mutations159,160 may also facilitate the design 
of newer and more effective p53‑based therapeutic 
modalities.

Tumour genomic expression signatures repre‑
sent a feasible and reliable platform for the develop‑
ment of accurate prognostic and predictive tools for 

personalized medicine. However, efforts to correlate 
expression signatures with TP53 status and clinical 
outcome were performed almost exclusively for breast 
cancer. Similar studies of additional cancer types will 
improve our understanding of p53 function in these 
malignancies, and may offer reliable and practical tools 
for predicting clinical outcome. Moreover, microRNA 
profiles associated with mutant p53 were demonstrated 
only in breast cancer114, and need to be explored further. 
Similarly, association of TP53 status with additional data 
types such as whole‑genome DNA methylation, histone 
modification and genomic aberrations may promote our 
understanding of how TP53 mutations affect cancer.

Several key issues are still not fully explored in the 
field of mutant p53. First, the prognostic, predictive and 
diagnostic value of TP53 mutations is still unknown  
for the majority of the less‑common cancer types. 
Similarly, the effect of specific TP53 mutations in each 
cancer type is far from resolved. In this context, numer‑
ous in vitro and in vivo studies demonstrated that dif‑
ferent p53 mutants are distinct in their abilities to bind 
other proteins, regulate gene expression, protect cells 
from chemotherapeutic drugs and, generally, exert 
various degrees of gain of function. However, there 
are currently no published experimental systems that 
address this issue in a systematic manner. Such studies, 
combined with large‑scale clinical analyses may pro‑
vide the data needed to enrich our understanding of 
individual mutants in the context of gain of function. 
Second, recent findings indicate that TP53 mutations 
occur not only in cancer cells, but also in their sup‑
porting stroma161, and may have significant prognos‑
tic value162. However, the credibility of these findings 
is controversial163,164. Another long‑standing enigma is 
the molecular mechanisms underlying the tumour‑
specific accumulation of mutant p53, although some 
clues begin to emerge with the unveiling of the roles of 
MDM2 (REFS 47,48,53), INK4A53, promyelocytic leukae‑
mia (PML)165, heat‑shock proteins, ubiquitin ligases49,65 
and other proteins in regulating mutant p53 level and 
activity in tumour cells.

Finally, considering recent in vitro, in vivo and clini‑
cal data, it seems that the gain‑of‑function properties of 
specific p53 mutants are important for their oncogenic 
properties, and that their accumulation in normal tis‑
sues and in tumours further augments their tumorigenic 
potential. Therefore, tumour TP53 status should not be 
considered a binary variable, but rather as multi‑param‑
eter data, consisting of the type of mutation, the level and 
subcellular localization of the mutant protein, as well as 
the status of TP53 LOH, codon 72 single nucleotide 
polymorphism166,167, and other pathway components. 
Similarly, treatment approaches that result in p53 accu‑
mulation should be carefully considered when dealing 
with tumours that express mutant p53 as they may rep‑
resent a double‑edged sword. In fact, preliminary data 
suggest that chemotherapy may decrease the survival of 
patients with lung cancer with mutated TP53 (REF. 123). 
Moreover, based on mouse models56,57,86, inhibition of 
gain‑of‑function mutants in tumours may represent an 
attractive therapeutic strategy.
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