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Multilayer, colloidal quantum-dot based light-emitting diodes that exhibit high brightness, solution processability, colour
tunability and narrow emission bandwidth are reported. These devices consist of a quantum-dot emissive layer
sandwiched between an organic hole transport layer and an electron transport layer of ZnO nanoparticles, all of which are
deposited using a solution process. The devices have maximum luminance and power efficiency values of 4,200 cd m22

and 0.17 lm W21 for blue emission, 68,000 cd m22 and 8.2 lm W21 for green, and 31,000 cd m22 and 3.8 lm W21 for
orange-red. Moreover, with the incorporation of the ZnO nanoparticles, these devices exhibit high environmental stability,
and the unencapsulated devices have operating lifetimes exceeding 250 h in low vacuum with an initial brightness of
600 cd m22.

I
n the past decade, several research groups have demonstrated
various lighting-emitting diodes (LEDs) using colloidal
quantum dots (QDs) as the emitting layers1–5. Interest in these

devices stems from the efficient and narrow-band emissions from
the QDs that can be easily tuned by varying the size of the QDs.
The maximum brightness and current efficiency of such
QD-LEDs have steadily increased from �100 cd m22 and 0.2 cd A21

to �10,000 cd m22 and 3 cd A21, respectively4,5. Currently, an
organic electron transport layer (ETL) composed of vacuum-deposited
small molecules is widely used to balance charge transport and
facilitate electron injection into QD emissive layers (EMLs).
However, small-molecule ETLs suffer from a few drawbacks that
could limit future commercialization. Compared with inorganic QD
EMLs, the small-molecule charge transport layer has inferior thermal
stability and is more susceptible to degradation induced by oxygen
and/or moisture. Moreover, a combination of solution and vacuum
deposition processes complicates the QD-LED fabrication process
and reduces the throughput compared to all solution-based manufac-
turing techniques. Therefore, a solution-processable inorganic charge
transport layer for a QD EML would be desirable for efficient and
stable QD-LEDs that are more amenable to high-throughput manufac-
turing. Vacuum-deposited, amorphous metal-oxide charge transport
layers for QD-LEDs have already been demonstrated by others, with
a maximum brightness of 1,950 cd m22 and current efficiency of
0.064 cd A21 being achieved6. More recently, amorphous TiO2
charge transport layers prepared by a sol–gel method have been intro-
duced, resulting in all-solution-processed QD-LEDs with a maximum
brightness of 12,380 cd m22 and efficiency of 2.5 cd A21 (ref. 5).
However, amorphous metal oxides have relatively low carrier mobility
compared with their crystalline phase. For instance, amorphous TiO2
has an electron mobility of only �1 × 1024 cm2 V21 s21, which is
four orders of magnitude lower than that in crystalline TiO2
(�1 cm2 V21 s21)7. Moreover, hydrolysis through thermal annealing
at 100 8C is needed to convert the sol–gel precursor into
amorphous TiO2.

In this study, we obtain bright, efficient QD-LEDs using a
solution-processable crystalline ZnO nanoparticle layer as the ETL

in combination with a thermally polymerizable polymer as the
hole transport layer (HTL). Such all-solution-processable QD-
LEDs using ZnO nanoparticles demonstrate maximum brightness
levels of 4,200 cd m22, 68,000 cd m22 and 31,000 cd m22 for emis-
sion of blue, green and orange-red light, respectively, which are the
highest values of brightness reported to date. The ZnO nanopar-
ticles ETL also required reduced driving voltage and demonstrated
improved luminance power efficiency. The turn-on voltages
(driving voltage corresponding to a luminance of 0.1 cd m22) and
peak power efficiencies were 2.4 V and 0.17 lm W21 for blue,
1.8 V and 8.2 lm W21 for green, and 1.7 V and 3.8 lm W21 for
orange-red emitting devices, respectively. In addition, continuous
operation of ZnO nanoparticle-based QD-LEDs in low vacuum
yielded a lifetime of 270 h with an initial luminance of 600 cd m22.

The ZnO nanoparticles used in the current study were syn-
thesized with a solution-precipitation method8, the details of
which are provided in the Methods. A transmission electron micro-
scope (TEM) image of the ZnO nanoparticles is shown in Fig. 1a,
indicating that the ZnO nanoparticles have an average diameter of
�3 nm. Lattice fringes can be clearly observed in the high-resol-
ution TEM image shown in the inset, which suggests good crystal-
linity of the ZnO nanoparticles. The X-ray diffraction pattern
(XRD) of the ZnO nanoparticles together with that of bulk phase
ZnO are shown in Fig. 1b. Comparison of the diffraction peaks
suggests that the ZnO nanoparticles are crystalline and adopt a
wurtzite structure similar to that of bulk ZnO. The small particle
size leads to a significant broadening of the characteristic diffraction
peaks from the ZnO nanoparticles.

The structure of the ZnO nanoparticle-based QD-LEDs is sche-
matically shown in Fig. 1c, with the devices consisting of layers of
indium tin oxide (ITO)/poly (ethylenedioxythiophene):polystyrene
sulphonate (PEDOT:PSS) (40 nm)/poly(N,N′-bis(4-butylphenyl)-
N,N′-bis(phenyl)benzidine) (poly-TPD) (45 nm)/CdSe–ZnS core–
shell QDs (13–25 nm)/ZnO nanoparticles (25–75 nm)/Al. With
the exception of the Al cathode, which was deposited using
vacuum thermal evaporation, all other layers were sequentially
deposited on ITO by spin-coating. Achieving the multilayer

Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400, USA; †These authors contributed equally to this
work. *e-mail: jxue@mse.ufl.edu; pholl@mse.ufl.edu

ARTICLES
PUBLISHED ONLINE: 7 AUGUST 2011 | DOI: 10.1038/NPHOTON.2011.171

NATURE PHOTONICS | VOL 5 | SEPTEMBER 2011 | www.nature.com/naturephotonics 543

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphoton.2011.171
www.nature.com/naturephotonics
mailto:jxue@mse.ufl.edu
mailto:pholl@mse.ufl.edu


structure using a solution process requires the use of orthogonal sol-
vents to avoid compromising the integrity of the underlying layers
while depositing overlayers. To this end, we used water, chloroben-
zene, toluene and ethanol as the solvents for PEDOT:PSS, poly-
TPD, CdSe-ZnS QDs and ZnO nanoparticles, respectively. As
poly-TPD has been shown to resist nonpolar solvents such as
toluene after annealing11, these multilayer QD-LEDs can be poten-
tially fabricated by high-throughput solution-processing techniques,
such as inkjet printing2,9. According to the schematic energy level
diagram shown in Fig. 1d, with an electron affinity of �4.3 eV
and an ionization potential of �7.6 eV (refs 10,11) the ZnO nano-
particle layer not only provides efficient electron injection from
the Al cathode into CdSe–ZnS QDs, but also helps to confine
holes within the QD layer due to the valence band offset at the
QD/ZnO nanoparticle interface, leading to an improved charge
recombination efficiency.

Figure 2a shows the current-density/luminance/voltage (J–L–V)
characteristics of ZnO nanoparticle-based QD-LEDs with different
light-emitting QDs in the EML. The maximum luminance for the
blue, green and orange-red devices was 4,200, 68,000 and
31,000 cd m22, respectively. These values are a factor of 3–7 higher
than previously reported highest luminances from QD-LEDs4,12.
These devices also exhibit rather low turn-on voltages of 2.4 V
(blue), 1.8 V (green) and 1.7 V (orange-red), which are lower than
the photon voltages of the corresponding devices (defined as the
photon energy hn divided by the electron charge e) because the
peak emission wavelengths are l¼ 470 nm (hn¼ 2.6 eV), 540 nm
(hn¼ 2.3 eV) and 600 nm (hn¼ 2.1 eV) for blue, green and
orange-red QD-LEDs, respectively. Electroluminescence spectra
measured using a high-sensitivity spectrometer indicated that light

emission from the blue QD-LEDs was achieved at a driving voltage
as low as 2.0 V (Supplementary Fig. S1), suggesting that electrons
and holes can be efficiently injected into the QD EML at low
driving voltages with the ZnO nanoparticle ETL. Holes and electrons
are likely to accumulate at the interface between poly-TPD and the
QD EML due to the large energy offset at this type II heterojunction.
With opposite charges accumulating at the interface, an Auger-
assisted hole injection process can take place, in which one high-
energy hole can be obtained after absorbing the energy released
from the interfacial recombination of an electron–hole pair. The
resulting high-energy hole can overcome the injection barrier and
recombine with an electron inside the QDs EML to emit a photon.
Such an Auger-assisted energy upconversion model has been used
to explain sub-gap electroluminescence observed from a number of
organic–organic and organic–inorganic type II heterojunctions8,13.

Voltages for the operation of these ZnO nanoparticle-based
QD-LEDs at typical display and lighting brightness levels are also
drastically lower than previously reported for QD-LEDs that use
small-molecular ETLs1,2,4. For example, the green emitting ZnO nano-
particle-based QD-LED reaches 100 cd m22 and 1,000 cd m22 at V¼
2.4 V and 2.8 V, respectively, whereas QD-LEDs using tris(8-hydroxy-
quinoline) aluminium (Alq3) as the ETL require 10.8 V and 13.5 V,
respectively (Supplementary Fig. S2)5. Reduced driving voltages for
the QD-LED are expected to lead to higher power efficiency and
better device stability. We hypothesize that the Auger-assisted
charge injection, which strongly depends on the level of electron injec-
tion into the QD layer, is the main reason for achieving such lower
operating voltages. Devices with ZnO nanoparticles as the ETL
showed significantly higher current density than devices without an
ETL, or with an Alq3 ETL (Supplementary Fig. S3). As the same
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Figure 1 | Crystallinity and XRD data, schematic of layered device, and energy levels of the ZnO nanoparticle-based QD-LED. a, TEM image of ZnO

nanoparticles (scale bar, 20 nm). Inset: High-resolution TEM images of same ZnO nanoparticles showing lattice fringes (scale bar, 3 nm). b, XRD pattern

from ZnO nanoparticles (red) together with that from bulk wurtzite ZnO (blue). c, Schematic of layers in the device structure. d, Energy level diagram for

the various layers.
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HTLs are used in these devices, the high current density in ZnO
nanoparticle-based devices is attributed to the very efficient electron
injection into the QD layer. With more electrons accumulated at the
poly-TPD/QD interface, the interfacial recombination rate is much
higher in the ZnO nanoparticle-based device than in other devices,
which also suggests that the Auger process is efficient. Although the
same Auger-assisted charge injection process can also take place at
the poly-TPD/QD interface in Al-only or Alq3/Al devices, the vol-
tages required to build up a sufficient concentration of electrons for
an efficient Auger process at the poly-TPD/QD interface are much
higher, presumably due to poor electron injection and/or transport.
Thus, Al-only or Alq3/Al devices do not exhibit a low-voltage turn-
on from Auger-assisted charge injection. In contrast, electrons can
be efficiently injected into a ZnO nanoparticle-based device even
at low voltages of �1–2 V (Supplementary Fig. S3) by the Auger
process. The efficient electron injection is attributed to the higher
electron mobility of ZnO nanoparticles as well as proper band align-
ments. The electron mobility of our crystalline ZnO nanoparticles
was measured to be 2 × 1023 cm2 V21 s21 (Supplementary
Fig. S4), which is lower than a previous report of
0.07 cm2 V21 s21 (ref. 14), probably due to different ZnO nanopar-
ticle size and processing conditions. However, our electron mobility
is at least one order of magnitude higher than that of organic ETLs
(typically �1 × 1024 cm2 V21 s21 or lower)9,15. In addition, the
conduction band of ZnO is aligned with the Fermi level of Al and
the conduction band of the green QDs (although the energy levels
of the QDs do vary with size due to the quantum confinement
effect), and apparently results in low energy barriers for electron
injection from the cathode into the EML. All of the above factors
result in the very low turn-on and operating voltages of the
devices described here.

The luminance powerhP and external quantum efficiencyhEQE as a
function of the luminance of the devices are shown in Fig. 2b. The ZnO
nanoparticle-based QD-LEDs display maximum hP and hEQE values
of 0.17 lm W21 and 0.22%, 8.2 lm W21 and 1.8%, and 3.8 lm W21

and 1.7% for blue, green and orange-red emission, respectively. Note
that the peak efficiencies of the current QD-LEDs are achieved at
high brightness (in the range 1 × 102 to 1 × 104 cd m22), which are

more desired for practical display and lighting applications. At
1,000 cd m22, the power efficiencies are hP¼ 0.12, 8.1 and
3.8 lm W21 for blue, green and orange-red devices, respectively,
and the corresponding luminous efficiencies are 0.31, 7.1 and
3.6 cd A21. Table 1 summarizes the detailed performance parameters
of the three different-coloured QD-LEDs of the present study.

It is noted that the device performance show a strong depen-
dence on the thickness of the QD and ZnO nanoparticle layer.
Figure 3 presents the turn-on voltage VT and peak external
quantum efficiency hEQE,m as a function of the QD and ZnO nano-
particle layer thickness for the green QD-LEDs. In Fig. 3a, with the
QD layer fixed at 25 nm, the turn-on voltage of the device increases
from 2.1 V to 3.4 V when the ZnO layer thickness is increased from
25 nm to 75 nm. However, the maximum hEQE,m of 1.4% is achieved
with 35-nm-thick ZnO, with a thicker ZnO layer inducing a fast
roll-off of the efficiency. For a 35 nm ZnO layer, increasing the
QD layer thickness from 13 to 25 nm resulted in a steady increase
of both VT and hEQE,m (Fig. 3b), but was much more dramatic for
hEQE,m. With the CdSe–ZnS QDs being �6 nm in diameter, this
suggests that multiple monolayers of QDs are needed for efficient
recombination of electrons and holes to form excitons directly in
the QD EML. This is very different from the earlier observation
that only a monolayer of QD is needed, with the suggestion that
excitons were formed elsewhere in the charge transport materials
followed by energy transfer to the QDs1,16. Moreover, Fig. 3b suggests
that an even higher hEQE could potentially be achieved with thicker
QD layers. However, the thickness of the QD layer in our device is
limited by the low concentration of the QD solution, because a
slow spin speed of 500 r.p.m. has already been used to achieve the
thickest QD layer. Nevertheless, the gain in hEQE will eventually be
offset by increased driving voltages for thicker QD layers, resulting
in low power efficiencies. Further systematic optimization of both
the QD and ZnO nanoparticle layer thickness is desired to realize
better device performance.

The normalized electroluminescence spectra of the ZnO nanopar-
ticle-based QD-LEDs at an operation voltage of 3 V are shown in
Fig. 4a. The full-width at half-maximum (FWHM) is 28 nm, 38 nm
and 39 nm for the blue, green and orange-red devices, respectively.
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Figure 2 | Electroluminescence performance of ZnO nanoparticle-based QD-LEDs with blue, green and orange-red emission. a, Current–density (J) and

luminance (L) versus driving voltage (V). b, Luminance power efficiency (hP) and external quantum efficiency hEQE versus luminance.

Table 1 | Comparison of turn-on voltage VT, emission peak wavelength lmax, FWHM, maximum luminance Lmax, external
quantum efficiency hEQE, power efficiency hP and luminous efficiency hA of the three ZnO nanoparticle-based QD-LEDs.

Colour of QD-LED VT (V) lmax (nm) FWHM (nm) Lmax (cd m22) hEQE (%) hP (lm W21) hA (cd A21)

Peak @ 1,000 cd m22 Peak @ 1,000 cd m22 Peak @ 1,000 cd m22

Blue 2.4 470 28 4,200 0.22 0.21 0.17 0.12 0.32 0.31
Green 1.8 540 38 68,000 1.8 1.6 8.2 8.1 7.5 7.1
Orange-red 1.7 600 39 31,000 1.7 1.5 3.8 3.8 3.9 3.6
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The inset shows photographs of the three operating devices fabricated
on 1 inch2 substrates. All devices display nearly saturated colours that,
as shown by the Commission Internationale de Eclairage (CIE)
chromaticity diagram in Fig. 4b, lie outside but near the National
Television System Committee (NTSC) standard colour triangle.

The luminance and driving voltage versus time for an unencap-
sulated green QD-LED in low vacuum (�0.1 torr) operated at a con-
stant current of �20 mA cm22 are shown in Fig. 5. The luminance
was L¼ 100 cd m22 initially, but increased to L¼ 600 cd m22

within 2 h, after which it slowly decreased with operation time,
reaching 300 cd m22 after 270 h. The driving voltage of the device
increased from 2.8 V to 4.1 V over the 270 h testing period. In con-
ventional QD-LEDs, LiF (or a low-workfunction metal such as Ca
or Mg) is used in combination with Al contacts for an improved
electron injection layer1,5,17. However, these devices can be unstable
due to air and moisture sensitivity of the cathode materials18. In con-
trast, the current ZnO nanoparticle-based QD-LEDs show drasti-
cally improved stability. In addition to being a stable oxide, the
35-nm-thick ZnO nanoparticles ETL could also serve as a barrier
against diffusion of oxygen and water into the active layers.

The mechanism leading to the dramatic increase in the brightness
and power efficiency of the QD-LEDs over the first 2 h of operation is
attributed to passivation of surface trap states on the CdSe/ZnS QDs

by adsorbed oxygen and water. As discussed in ref. 19 and references
therein, the luminance of CdSe–ZnS core–shell quantum dots
becomes larger by factors ranging from 10% to 8,000% in matters
of minutes to hours upon exposure to water vapour or moist
oxygen19–21. The time constant and factor for the increased lumi-
nance are reported to be functions of the experimental conditions,
but the increase by 600% in 2 h for our QD-LEDs is well within
reported values for similar QDs. As shown in Supplementary
Fig. S5, the formation of carbonate compounds was detected by
X-ray photoelectron spectroscopy (XPS) on the surface of unacti-
vated QDs stored simply in humid laboratory air for five days.
Activation of the CdSe–ZnS QD layer with photons, similar to the
report in ref. 19, caused the formation of both carbonate and sulphate
compounds on the QD surfaces after less than 3 h in humid labora-
tory air. Others have reported increased luminance and the
formation of sulphates on CdS–ZnS core–shell nanoparticles follow-
ing UV irradiation in humid air22. The formation of sulphate (but not
carbonate) compounds on the CdSe–ZnS QD surfaces has been
predicted19, but they could not be detected using XPS due to the for-
mation of an adventitious silicon layer. In the same study19, following
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the rapid rise in photoluminescence brightness upon irradiation in
moist oxygen, a decreased brightness was reported in periods of
0.25 h to a few hours19. In the present study, the ZnO nanoparticle
layer stabilized the increased brightness and maintained it for
periods of more than 250 h.

In summary, we have demonstrated very bright and very effi-
cient, solution-processed QD LEDs using a ZnO nanoparticle
ETL. The simple multilayer structure between the two electrodes,
consisting of a conducting polymer hole injection layer, a conju-
gated polymer hole transport layer, a core–shell QD emissive layer
and a ZnO nanoparticle electron transport layer, was entirely depos-
ited using spin-coating from solutions with orthogonal solvents.
The devices display maximum luminance and power efficiency
values of 4,200 cd m22 and 0.17 lm W21, 68,000 cd m22 and
8.2 lm W21, and 31,000 cd m22 and 3.8 lm W21 for blue, green
and orange-red emissions, respectively. The device drive voltages
at 600 cd m22 were typically �4 V, and these low values were attrib-
uted to an Auger upconversion mechanism. Finally, unencapsulated
device lifetimes of 270 h in low vacuum (�0.1 torr) at an initial
luminance of 600 cd m22 have been achieved.

Methods
Synthesis of CdSe–ZnS and ZnO nanoparticles. Orange-red, green and blue
emitting CdSe–ZnS QDs with chemical-composition gradients were prepared
according to a method reported in the literature23. For a typical synthesis, 0.1 mmol
of CdO, 4 mmol of zinc acetate and 5 ml of oleic acid were placed in a 50 ml flask
and heated to 150 8C in flowing high-purity N2 for 30 min. Then 15 ml of
1-octadecene was added to the flask and the temperature increased to 300 8C.
A stock solution containing 2 ml of trioctylphosphine, 0.2 mmol of Se and 3 mmol of
S was quickly injected into the flask. The reaction temperature was maintained for
10 min and then cooled to room temperature. The resulting QDs were washed several
times (minimum of three times) and finally dispersed in toluene at 10 mg ml21.

ZnO nanoparticles were synthesized by a solution-precipitation process using Zn
acetate and tetramethylammonium hydroxide (TMAH)12. For a typical synthesis,
a solution of zinc acetate in dimethyl sulphoxide (DMSO) (0.5 M) and 30 ml of a
solution of TMAH in ethanol (0.55 M) were mixed and stirred for 1 h in ambient
air, then washed and dispersed in ethanol at a concentration of �30 mg ml21.

Fabrication and characterization of ZnO nanoparticle-based QD-LED. QD-LEDs
were fabricated on glass substrates coated with ITO with a sheet resistance of
�20 V sq21. The substrates were cleaned with deionized water, acetone and
isopropanol, consecutively, for 15 min each, and then treated for 15 min with ozone
generated by ultraviolet light in air. These substrates were spin-coated with
PEDOT:PSS (AI 4803) and baked at 150 8C for 15 min in air. The coated substrates
were then transferred to a N2-filled glove box for spin-coating of the poly-TPD,
CdSe-ZnS QD and ZnO nanoparticle layers. Poly-TPD was purchased from
American Dye Source and used for QD-LED devices without further purification.

The poly-TPD hole-transport layer was spin-coated using 1.5 wt% in chlorobenzene
(2,000 r.p.m. for 30 s), followed by baking at 110 8C for 30 min. This was followed by
spin-coating of CdSe–ZnS QDs (10 mg ml21, toluene) and ZnO nanoparticles
(30 mg ml21, ethanol) layers followed by baking at 145 8C for 30 min. The spin
speed varied from 500 to 2,000 r.p.m. for the QD layer and from 2,000 to
6,000 r.p.m. for the ZnO nanoparticle layer to achieve different layer thickness.
These multilayer samples were then loaded into a custom high-vacuum deposition
chamber (background pressure, �3 × 1027 torr) to deposit the top Al cathode
(100 nm thick) patterned by an in situ shadow mask to form an active device area of
4 mm2. Current–luminance–voltage characteristics were measured using an Agilent
4155C semiconductor parameter analyser with a calibrated Newport silicon diode.
The luminance was calibrated using a Minolta luminance meter (LS-100) according
to the suggested method24. The electroluminescence spectra were obtained with a
JASCO FP750 spectrometer and a Keithley 2400 power source. Unless otherwise
specified, all devices were stored and tested in air without any encapsulation. The
continuous operation lifetime data shown in Fig. 5 are from devices tested in low
vacuum (�0.1 torr).
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