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Electronic nanostructures made from natural amino acids are
attractive because of their relatively low cost, facile processing
and absence of toxicity1–3. However, most materials derived
from natural amino acids are electronically insulating1–6. Here,
we report metallic-like conductivity in films of the bacterium
Geobacter sulfurreducens7 and also in pilin nanofilaments
(known as microbial nanowires8,9) extracted from these bac-
teria. These materials have electronic conductivities of
∼5 mS cm21, which are comparable to those of synthetic met-
allic nanostructures2. They can also conduct over distances on
the centimetre scale, which is thousands of times the size of
a bacterium. Moreover, the conductivity of the biofilm can be
tuned by regulating gene expression, and also by varying the
gate voltage in a transistor configuration. The conductivity of
the nanofilaments has a temperature dependence similar to
that of a disordered metal, and the conductivity could be
increased by processing.

Some bacteria secrete 3–5-nm-wide proteinaceous pilin filaments,
which can grow tens of micrometres long and have been proposed
to serve as nanowires to transport electrons over long distances
through a nanostructured network8,9. Because biological proteins are
generally considered as electronic insulators1–6, understanding electron
transport through these natural nanostructures is a fundamental scien-
tific challenge10. This understanding has implications for the develop-
ment of nanobiotechnological applications1,10 and will provide a
unique explanation for a wide range of important phenomena that
influence carbon and mineral cycling in soils and sediments, bioreme-
diation, corrosion and anaerobic conversion of organic wastes to
methane or electricity8,9. Previous studies on microbial nanowires
were performed under unnatural conditions and gave contrasting
results8–10, with the underlying conduction mechanism remaining
unclear10. To advance the fundamental understanding of conduction
in these materials, it is essential to investigate the dependence of elec-
trical properties under several experimental probes, such as tempera-
ture11,12, and to explore the possibility of tuning the conduction by
genetic engineering1,13,14 or gating in a three-terminal device configur-
ation13,15. Moreover, it is important to measure the conductivity at
low energy and bias voltages so that the material is probed under
‘natural’ conditions.

To directly investigate in situ conductivity, biofilms of the
Geobacter sulfurreducens strain DL-17 were grown in a microbial
fuel cell with 10 mM acetate as the electron donor (as described pre-
viously16), modified so that the anode of the fuel cell, which serves as

the electron acceptor to support growth, was composed of two gold
electrodes (as a split anode) separated by a non-conductive gap of
50 mm, �50 times the length of a cell (Fig. 1a). Medium exiting
the anode chamber, which still contained substantial acetate
(�9 mM), was directed through another chamber, serving as a
control, that had an identical arrangement of two gold electrodes,
except that the electrodes were not connected to the cathode and
thus could not serve as an electron acceptor for growth.

As expected16,17, the current between the anode and the cathode
increased over time with cell growth on the electrodes (Fig. 2a).
Confocal laser scanning microscopy (CLSM) revealed that the
cells formed a confluent biofilm that spread across the non-
conductive gap (Fig. 1b–e). In contrast, there was no growth on
the control electrodes (which were not connected to the cathode;
Supplementary Fig. S1). If only one of the two anodes was con-
nected to the cathode, a biofilm formed only on that side and did
not bridge the gap (Supplementary Fig. S2).

The connection between the anodes and the cathode could be
temporarily disrupted to connect the two anodes to electronics for
in situ measurements of conductance across the non-conducting
gap (Fig. 2b). There was substantial d.c. conductance between the
two electrodes when the biofilm bridged the gap between the elec-
trodes (Fig. 2c). The conductance increased over time, consistent
with the increase in biofilm thickness over time. Meanwhile, a.c.
impedance spectroscopy measurements (see Supplementary
Information), which avoid potential contributions of redox charge
transfer and ion diffusion to measured d.c. conductance, and separ-
ate electronic and ionic conductivity, gave comparable estimates of
conductance (Fig. 2c and Supplementary Fig. S3). When only one or
neither of the electrodes had been connected to the cathode in the
control chamber, there was no biofilm bridging the gap and the con-
ductance between the two electrodes was negligibly small and did
not change over time (Fig. 2c). Deleting acetate from the media
removed the potential for microbial current production, but did
not change the biofilm conductivity, confirming that the conduc-
tivity measured was not associated with current produced by the
microorganisms (Supplementary Fig. S4).

The KN400 strain of G. sulfurreducens produces higher current
densities than the DL-1 strain7 and had higher conductivity than
the DL-1 strain in two-probe measurements (Fig. 3a and
Supplementary Fig. S9). A four-probe method confirmed that the
measured conductivity was an intrinsic property of the biofilm
and could not be attributed to measurement artefacts due to
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contacts or electrode polarization18,19 (Fig. 2d and Supplementary
Fig. S5). The conductivity values obtained with the four-probe
method were higher than those with the two-probe approach.
This can be attributed to the energy level mismatch between the
electrodes and the biofilm18–20. When two dissimilar materials are
put in intimate contact, an energy barrier can form at the interface
due to the difference between the materials’ work functions and
electron affinity that prevents easy electron injection20. The four-
probe measurements demonstrate that the biofilms are significantly
conductive over distances of more than 1 cm because the biofilm
was the only possible electronic pathway for the current flow
between the current-carrying electrodes spaced 1.25 cm apart.

Using a conformal mapping technique21, a conductivity of
5 mS cm21 was determined for gap-spanning KN400 biofilms
with a height of 40 mm. This is comparable to the conductivity of
synthetic organic metallic nanostructures such as polyaniline
and polyacetylene2.

Biofilms of well-known biofilm formers such as Pseudomonas
aeruginosa and Escherichia coli grew across the non-conducting
gap when their preferred electron acceptor, oxygen, was provided
(Supplementary Fig. S6). However, the measured conductivity was
not significantly greater than the control without a biofilm
(Supplementary Fig. S7). This is in agreement with previous
reports of biofilms functioning as insulators rather than conduc-
tors4–6. Shewanella oneidensis is reported to have conductive fila-
ments9,10, but produces biofilms that are too thin (,10 mm) to
bridge the non-conducting gap of our apparatus, consistent with
previous electrode studies22.

The hypothesis17 that a network of pili nanofilaments might
confer conductivity to G. sulfurreducens biofilms was evaluated by
manipulating pilin abundance in the biofilms. We found a strong
correlation between pilin protein and conductivity (Fig. 3a). For
example, when the split anodes were not connected to the
cathode, but fumarate was provided in the medium as an alternative
electron acceptor, a biofilm bridged the non-conductive gap
(Supplementary Fig. S8). Conductivity across these biofilms was
very small, comparable to controls without biofilms, and consistent
with a much lower abundance of pilin protein in the fumarate-
grown biofilm (Fig. 3a, Supplementary Fig. S7). The KN400 strain
of G. sulfurreducens, which has a higher capacity for current pro-
duction7, produced biofilms that had much higher conductivity
than the DL-1 strain, and there was more pilin protein in the
KN400 biofilm7 (Fig. 3a, Supplementary Fig. S9). Strain BEST is a
strain of G. sulfurreducens in which the genes for four of the most
abundant outer-surface c-type cytochromes (OmcB, OmcE, OmcS
and OmcT) have been deleted23. The BEST strain had higher pilin
content and higher biofilm conductivity than the DL-1 strain
(Fig. 3a, Supplementary Fig. S9). These studies provided an in situ
demonstration that pili are contributing to biofilm conductivity.

To directly evaluate pili conductivity, pili were sheared off from
the live cells of strain KN400 (Fig. 3b), and a concentrated prep-
aration of pili was placed on the split gold electrodes and dried in
a desiccator. A similar preparation was made from a control strain
of KN400 in which the gene coding for PilA, the pilin structural
subunit, was deleted. The pili from the wild-type strain formed an
interpenetrating network on the electrode (Fig. 3d), similar to that
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Figure 1 | Strategy to measure in situ biofilm conductivity. a, Schematic of microbial fuel cell with two gold electrodes serving as an anode, separated from

the cathode by a proton exchange membrane (PEM). The biofilm grows over the electrodes and the non-conducting gap between the two electrodes. No

biofilm forms on the control electrode pair. Gap width 2a¼ 50mm, electrode width b ≈ 1.27 cm, electrode length L ≈ 2.54 cm, electrode thickness t ≈ 50 nm

and biofilm height g. b–e, Representative fluorescent confocal scanning laser microscopy images of split electrodes. Images were taken when the microbial

current was 0.25 mA and the biofilm height was 36+1.4 mm. Gap is indicated by arrows. b–d, Top-down confocal image slices of biofilm spanning the non-

conductive gap. X–Y image slices (parallel to the electrode surface). Scale bar, 100 mm. e, Cross-sectional image of biofilm spanning the non-conductive gap.

X–Z image slice through the biofilm, in a direction perpendicular to the surface of the gold anode and across the 50 mm gap. Scale bar, 50 mm.

LETTERS NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2011.119

NATURE NANOTECHNOLOGY | VOL 6 | SEPTEMBER 2011 | www.nature.com/naturenanotechnology574

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nnano.2011.119
www.nature.com/naturenanotechnology


present in a biofilm7 (Fig. 3c), and had a conductivity 10–100 times
higher than the preparation of the PilA-deficient mutant or buffer
alone (Fig. 3e). Furthermore, denaturing the cytochromes did not
affect pili conductivity (Supplementary Fig. S10). Additional
control experiments using inorganic metallic nanowires and non-
conductive latex nanoparticles yielded expected results, further vali-
dating our measurement methodology (Supplementary Fig. S11).
The conductivity of pili preparations (6 mS cm21) was comparable
to that of peeled biofilms (18 mS cm21). These results confirmed
that pili can form a matrix with sufficient conductivity to account
for electron flow through biofilms.

Insight into the conduction mechanism in biofilm and pili was
obtained by measuring conductivity as a function of temperature.
Biofilm measurements were performed with the CL-1 strain of
G. sulfurreducens, which forms highly cohesive biofilms that,
when grown on graphite electrodes, can be peeled off the surface
and placed on gold electrodes specifically designed for four-probe
measurements. Intact wet biofilms of strain CL-1 exhibited conduc-
tance comparable to KN400, with the conductance of peeled or
dried biofilms being significantly lower. On cooling from room
temperature, biofilm conductivity increased by over an order of
magnitude (Fig. 4a). In the case of pili samples, the conductivity
increased by three orders of magnitude. An increase in conductivity
on cooling is a hallmark of metallic conduction2,11,12,24. Notably, the
conductivity increased exponentially upon cooling, as expected for
high-performance, quasi-one-dimensional organic metals2,11,12,24,
rather than linearly as in conventional metals, indicating that the
conductivity is limited by backscattering from thermal
phonons2,11,12. In other words, the conductivity begins to decrease
exponentially upon heating at temperatures where thermally
excited backscattering phonons begin to scatter the charge carriers.
For temperatures where the thermal energy (kBT) is much less
than the energy of the backscattering phonons (h−vb), an
exponential increase in conductivity on cooling is expressed as11,12

s(T)¼ smexp(h−vb/kBT). The energy of backscattering phonons
calculated from these measurements (0.6+0.2 eV for biofilm) is

comparable with that observed experimentally for organic
metals24 (h−vb ≈ 0.4 eV).

At even lower temperatures, the conductivity decreased exponen-
tially with cooling as expected for disordered metals11,12,24, which is a
signature of the thermally activated hopping mechanism with charac-
teristic Arrhenius dependence25 s(T)¼ s0exp(2T0/T). The same
conductivity was obtained for heating and cooling. A similar temp-
erature dependence of conductivity has been observed previously
for a number of nanostructured organic metals2,11,12,24–26. A
maximum in conductivity or change in sign of temperature depen-
dence at a crossover temperature T* is a key characteristic of many
organic metals12. The crossover temperature for pili and biofilms
(T* ≈ 260–270 K) is close to that reported for organic metals
(T* ≈ 200–250 K)12,24. The observed conductivity maximum is prob-
ably a crossover between two competing mechanisms2,11,12: at higher
temperatures, conductivity increases with cooling due to intrinsic
metallic transport, and at lower temperatures, conductivity decreases
with cooling due to the influence of disorder-induced charged traps.
Chemical impurities, defects, structural imperfections and inhomo-
geneities can act as traps to localize electrons11,12,15. The activation
(detrapping) energy calculated from these measurements (kBT0)
was 1.0 eV for the biofilm, which compares favourably with organic
metals24,25. In the case of pili samples, the detrapping energy was
reduced to 0.85 eV, the conductivity maximum shifted to lower temp-
eratures, and a temperature dependence of conductivity was four
orders of magnitude weaker compared to the biofilm (Fig. 4a), all
indicating reduced disorder and improved metallic nature2,11,15.
These studies demonstrate that higher metallic conductivity can be
achieved through better processing, and further improvements can
enhance the conductivity significantly11,12.

We also observed a large gating effect on biofilms, consistent
with that previously observed in organic metals2,15,27. When electro-
chemical gating was performed on biofilms in an electrolyte-gated
field-effect transistor configuration2,15,27–29 (Fig. 4b, inset), the con-
ductivity increased in a sigmoidal manner by more than two orders
of magnitude with increasing gate potential (Fig. 4b). This response
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Figure 2 | Measurement setup and conductance data. a, Representative current produced by the DL-1 strain of G. sulfurreducens. b, Schematic of conductivity
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was reversible and no hysteresis was observed. This sigmoidal
response is characteristic of organic metals2,28,29, and the conduc-
tivity plateau at higher gate voltages has been attributed to metallic
conduction with a nearly constant density of states2,27. At lower gate
voltages, the charge carriers can be trapped by the Coulomb poten-
tial of anions. However, at higher gate voltages with sufficiently large
carrier density, the carrier wavefunctions can overlap and screen the
Coulomb attraction between the traps and the carriers, resulting in a
transition to the metallic state15.

To evaluate whether doping can act as a source of carriers, the con-
ductivity of pili was measured as a function of pH. The conductivity
increased by two orders of magnitude with decreasing pH
(Supplementary Fig. S12). This pH dependence suggests that pili can
be doped by protons, in a manner similar to that observed previously

in organic metals2,11,30. Protonation can result in p-type carriers11,30,
which is consistent with electrochemical gating experiments that have
also indicated that the charge carriers in these biomaterials are p-type.

Owing to difficulties in crystallization, the molecular structure of
G. sulfurreducens pili filaments is not presently known. Recently,
semiconductive behaviour has been reported for nanotubes self-
assembled from short peptides composed of aromatic residues1.
We hypothesize that, due to the considerably short length of the
pilin protein monomers8, the aromatic moieties in pilins8 might
tilt with respect to peptide structures, minimizing the intermolecu-
lar distance3. Alternatively they might replace the sp3 carbon atom
between the amine and carboxyl groups along the peptide skeleton
forming the amide bond2, allowing efficient intermolecular electron
delocalization in pilin-polymerized filaments, which can result in
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the observed metallic-like conductivity. X-ray diffraction patterns of
purified pili revealed sharp peaks superimposed on a broad scatter-
ing background indicative of tightly packed crystalline regions dis-
persed in an amorphous medium26 (Supplementary Fig. S13). The
d-spacing (�3.5 Å) associated with the diffraction peak at �258
indicates p-orbital overlap and charge delocalization3,24,26. Similar
d-spacing has been observed previously in many conductive
materials based on aromatic ring stacking3,24,26. For example, in
organic metal polyaniline, this d-spacing indicates the face-to-face
p–p interchain stacking distance between phenyl rings24,26. These
initial structural data suggest that p–p interchain stacking
between aromatic amino acids such as phenyl rings in phenylaniline

or phenol rings in tyrosine is present in pili, conferring conductivity
to pili. Future structural studies on pili will provide additional
insights into the conduction mechanism at the molecular level.

In conclusion, we report metallic-like conductivity in a living,
organic material comprising a network of nanofilaments derived
from natural amino acids. The demonstrated ability to engineer metallic
functionality into natural, self-renewing, nanostructured materials will
allow the introduction of new materials and concepts. It may also offer
possibilities for overcoming barriers associated with coupling abiotic
and biotic materials in nanobioelectronics1,13 and could provide insights
for engineering similar functionalities into synthetic materials1,14.

Methods
Bacterial strains and culture conditions. Geobacter sulfurreducens strain DL1
(ATCC 51573)7, strain KN4007, strain BEST23 and strain CL-1 (a strain that
produced a highly cohesive biofilm; Leang et al., in preparation), were obtained from
our laboratory culture collection. Shewanella oneidensis strain MR-1 (ATCC
7005500) was obtained from the American Type Culture Collection. The cultures
were maintained at 30 or 25 8C under strictly anaerobic conditions in growth
medium supplemented with fumarate (40 mM) as the electron acceptor as described
previously with acetate (10 mM) as the electron donor for G. sulfurreducens8,16 or
Fe(III) citrate (50 mM) as the electron acceptor and lactate (20 mM) as the electron
donor for S. oneidensis22. Pseudomonas aeruginosa strain (obtained from the
University of Massachusetts–Amherst microbiology department culture collection)
and E. coli strain DH5a (obtained from our laboratory collection) were aerobically
grown in M9 media supplemented with 0.1% casamino acids (Difco Lab. USA).

Biofilm growth on electrodes. To construct the electrodes, glass slides (2.54 cm ×
2.54 cm) were cleaned ultrasonically using successive rinses of trichloroethylene,
acetone and methanol and then blown dry with nitrogen. To achieve an insulating
gap in the anode, a 50-mm-diameter tungsten wire was placed on the glass substrate
as a deposition mask. For four-probe measurements, electrodes were fabricated
using standard photolithography processing. A 40 nm gold film on top of a 10 nm
chromium adhesion layer was thermally evaporated on these substrates at
1 × 1026 mbar and a deposition rate of 0.1 nm s21, producing gold split electrodes
with a 50 mm non-conductive spacing. Optical microscopy revealed that the gap was
uniform, and resistance measurements confirmed that the electrodes were well
insulated from each other (Ggap , 1 × 10210 S).

Microscopy. Biofilms were examined using CLSM as described previously16,17.
Biofilms were stained with the LIVE/DEAD BacLight Bacterial Viability Kit (L7012)
(Molecular Probes) following the manufacturer’s instructions. Anode biofilms were
imaged with a Leica TCS SP5 microscope (Leica Microsystems GmbH) with an HCX
APO 63× (numerical aperture, 0.9) objective, and a minimum of five fields were
imaged. Images were processed and analysed with LAS AF software (Leica).
A minimum of five random CLSM image stacks were used to determine average
biofilm and pili height using the biofilm analysis software Phobia laser scanning
microscopy imaging processor (PHLIP). Transmission electron microscopy (TEM)
and atomic force microscopy (AFM) were performed as described previously8.

Conductivity measurements (d.c.). To measure the conductivity under conditions
of low energy and bias voltages, a voltage ramp of 0–0.05 V was applied across split
electrodes in steps of 0.025 V for two-probe measurements using a source meter
(Keithley 2400). For each measurement, after allowing the exponential decay of the
transient ionic current, the steady-state electronic current for each voltage was
measured every second over a minimum period of 100 s using a Labview data
acquisition program (National Instruments). The time-averaged current for each
applied voltage was calculated to create the current–voltage (I–V ) characteristics. For
four-probe measurements, a source meter (Keithley 2400) was used to apply a fixed
current between the outer of the four electrodes and to measure the potential drop
between two inner electrodes18 by measuring the voltage for each current every
second over a period of 100 s after reaching the steady state. An additional high-
impedance voltmeter (Keithley 2000) was used to record the output voltage of the
current source to calculate conductance18. The validity of the four-probe
measurements was checked by reversing the polarity of the input current. Forward
and reverse currents yielded similar conductivity values, verifying the ohmic contact
of the junction (Fig. 2d). For both two- and four-probe measurements, the linearity
of the I–V characteristics was maintained by applying an appropriate low
voltage/current. The dissipative power was kept under 1 × 1026 W to eliminate
self-heating effects.

Conductivity measurement in the absence of electron donor (acetate). When fuel
cell current production became stable, the growth medium in the anaerobic chamber
was removed under sterile, anaerobic conditions by refilling the chamber with a
sterile, anaerobic buffer that did not contain any electron donor. Within a few hours,
the current dropped to zero (Supplementary Fig. S4). As described previously16,
high-performance liquid chromatography (HPLC) was used to confirm that the
concentration of acetate was close to zero in the effluent (Supplementary Fig. S4a).
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or with biofilm, but not bridging the gap, showed very low conductivity

(,1 × 1022 mS cm21 at 300 K; see Fig. 3e) that did not change with

temperature. Inset: Arrhenius fit for exponentially decreasing conductivity. b,
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When acetate was again added as the electron donor, fuel cell current production
increased rapidly to a maximum and stabilized at levels similar to those observed
before medium replacement.

Conductivity calculation. Conformal mapping (the Schwarz-Christoffel
transformation)21 was used to calculate biofilm conductivity from the measured
biofilm conductance G (variables defined in Fig. 1a). In the limiting cases
a , g ≪ b, the conductivity formula reduces to

s = G
p

L
/ln

8g
pa

( )

The conductivity of pili preparations was calculated using the relation31

s = G
2a
gL

( )

Thicknesses were determined using confocal microscopy. For conductivity
comparisons with controls, the height of the thickest biofilm was used.

Biofilm characterization. The biofilms were removed from the gold electrodes using
600 ml of isotonic wash buffer. Collected biomass was immediately frozen with
liquid nitrogen and stored at 220 8C. After thawing, vortexing, sonicating and
centrifuging for 5 min at 9,000 r.p.m., supernatants and pellets (cell debris) were
collected. Supernatant protein concentration was measured using Quick Start
Bradford Dye Reagent (BioRad), and standards were prepared using bovine serum
albumin (Sigma). Pellets were suspended in 200 ml deionized water and boiled with
0.5% sodium dodecyl sulphate for 10 min, and protein concentration was
determined by the bicinchoninic acid method with bovine serum albumin as a
standard (as described previously7). To determine the amount of PilA protein in the
biofilms, immunoblots were probed with the PilA-specific antiserum as described
previously7. Immunoreactive bands were visualized with One-Step Western Kit
(GeneScript Co) according to the manufacturer’s instructions. Each lane was loaded
with 8 mg of cell protein. The intensity of the PilA bands was quantified by
densitometry using ImageJ software (NIH).

Pili filament preparation. To remove pili from the live cells of strain KN400, cells
were washed twice in 150 mM ethanolamine buffer (pH 10.5) and vortexed for
2 min to remove pili32. Cells were removed by centrifugation. Pili were concentrated
and washed by ultracentrifugation at 100,000g or using ammonium sulphate
precipitation, and resuspended in ethanolamine buffer32. Additional purification
was performed using a sucrose gradient method33 for the cytochrome denaturing
experiment. TEM and AFM imaging were used to confirm the presence of pili in
filament preparations (Fig. 3b,d). For all conductivity comparisons (Fig. 3e and
Supplementary Fig S10), 15 mg of filament protein was placed on the split-gold
electrodes and dried in a desiccator for one day. Sucrose gradient treatment yielded a
higher room-temperature conductivity (sdc(300 K) ≈ 1,400 nS; Supplementary
Fig. S10) compared to untreated samples (sdc(300 K) ≈ 1,000 nS; Fig. 3e),
indicating an improved metallic nature in more purified samples2,11,12. For haem
staining, the cytochrome contents were analysed by 12.5% Tris-tricine
denaturing polyacrylamide gel electrophoresis followed by staining with
N,N,N′ ,N′-tetramethylbenzidine as described previously7. After sucrose gradient
treatment, samples were filtered (filter pore diameter, 0.2 mm) for additional
purification, and 1.14 mg of filament protein was used for temperature experiments
(Fig. 4a). The buffer containing pili was equilibrated with aqueous HCl to perform
pH experiments30.

Temperature variation experiments. A physical property measurement system
(PPMS-6000, Quantum Design) was used to vary the temperature of a sample stage
with an electrode of size 1 cm × 1.25 cm. A four-probe approach was used to
measure conductance. All experiments were performed in vacuum. Best fitting was
obtained by testing linear regression (R2) values for various
temperature dependences.

Electrochemical gating. A source meter (Keithley 2400) was used to apply a voltage
Vg between gate (Ag/AgCl, 3 M KCl reference electrode, BAS) and source–drain
electrodes to create the electrolyte gated field effect (Fig. 4b, inset). Gate current Ig
was continuously monitored over the entire experiment. No monotonic dependence
of gate current on the measured source–drain current was observed, confirming that
the largest part of this ion current does not flow through the biofilm across the gap
but originates from the gold electrodes, which were partially covered by electrolyte.
Another source meter (Keithley 2400) was used to apply a voltage between source
and drain to measure conductance. IGOR Pro software (WaveMetrics) was used for
data fitting and analysis.

X-ray diffraction (XRD). XRD experiments were performed using a PANalytical
X’Pert Material Research Diffractometer. The X-ray radiation source was CuKa
radiation (l¼ 1.5418 Å), and the scattered radiation diffractograms were collected
over the range 2u≈ 2–378 in a reflection geometry26.

Full methods and any associated references are presented in the Supplementary
Information.
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