A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy

Nam-Hyuk Cho1,2,3†, Taek-Chin Cheong1,2,4†, Ji Hyun Min5,6†, Jun Hua Wu6†, Sang Jin Lee4, Daehong Kim4, Jae-Seong Yang7, Sanguk Kim7, Young Keun Kim5,6* and Seung-Yong Seong1,2,6*

Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide–zinc oxide core–shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle–antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle–antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

Endothelial cells (DCs) are important in the initiation and regulation of antigen-specific immune responses1 and have been used as potent therapeutic vaccines against human cancers2–4. Preliminary results using ex vivo-generated DCs that are pulsed with tumour antigens show therapeutic immunity in some cancer patients, but clinical trials have demonstrated poor efficacy5–7.

To induce DC-based immune responses for destroying tumours, DCs must migrate into the lymph node and activate antigen-specific T cells. The progress of DC migration has been tracked using several non-invasive imaging methods such as scintigraphy6, single positron emission tomography7, and magnetic resonance imaging (MRI)8. DCs must migrate into the lymph node and activate antigen-specific T cells. The progress of DC migration has been tracked using several non-invasive imaging methods such as scintigraphy6, single positron emission tomography7, and magnetic resonance imaging (MRI)8. Among these, MRI, which uses superparamagnetic iron oxide (SPIO) nanoparticles, offers exceptional contrast for lymphoid tissues and provides high-resolution in vivo images with good signal-to-noise ratios9. However, for clinical applications, conventional SPIO nanoparticles must be coated with water-soluble polymers such as dextran to make them biocompatible. Furthermore, cellular uptake of these particles requires a long incubation time (generally >6 h), the use of transfection agents and surface modifications10–15. Moreover, because most transfection agents are highly charged, toxic and have a narrow range of non-toxic concentrations, their use needs to be optimized for every clinical setting16.

Another hurdle in DC-based immunotherapy is the development of a clinically relevant delivery system that can efficiently deliver target antigens into DCs as sufficient amounts of antigen must be delivered into the DC to generate potent cytotoxic T lymphocytes (CTL) and CD4+ helper T cells, which collaborate to kill tumours3–16. Owing to their diverse and unique physicochemical and functional properties, nanoparticles (<100 nm) have been explored for various in vivo applications17,18. Nanoparticles are good candidates for delivering antigens into DCs because their large surface area allows the immobilization of multiple therapeutic agents19,20. Bimodal nanotemplates that contain either fluorescent chemicals21 or quantum dots22 and SPIO nanoparticles have been used to label DCs for both optical and MRI15, but their clinical applications are limited by cytotoxicity14. To overcome the toxicity issues, disulphonated indocyanine green optical probes together with SPIO nanoparticles were incorporated into poly(lactide-co-glycolide) (PLGA)23. When used as a carrier to deliver antigens into DCs, this PLGA-based nanoparticle induced strong CTL responses25,26. However, a long incubation period is required for DCs to take up the carrier25,26 and this method involves emulsifying steps that use organic solvents such as poly(vinyl alcohol) that may affect the antigenicity and stability of loaded antigen27,28 and the functionality of DCs29.

Here, we show that multifunctional core–shell nanoparticles consisting of a SPIO core covered with a photonic ZnO shell can be used in DC-based immunotherapy. The nanoparticles were efficiently taken up by DCs without the need for transfection agents and were imaged in vitro using a confocal microscope and in vivo using MRI. Furthermore, the nanoparticles were designed to have ZnO-binding peptides that could carry tumour antigens (specifically, the carcinoembryonic antigen, CEA30,31) into DCs. DCs loaded with the nanoparticle–antigen complex induced anti-tumour immunity in vivo and prolonged the survival of immunized mice.

Preparation of Fe3O4–ZnO core–shell nanoparticles

The Fe3O4–ZnO core–shell nanoparticles were prepared using a modified nanoemulsion method32. Nanoparticle synthesis began with the formation of the core (Fe3O4) followed by the coating of the shell (ZnO). The manufactured nanoparticles were uniformly spherical and monodisperse (Fig. 1a). Particle size measurements showed that the nanoparticles had an average diameter of 15.7 nm. The increase of 7.2 nm over the ~8.5 nm diameter of the Fe3O4 as a result of the surface coating clearly demonstrates the formation of a core–shell nanostructure (Fig. 1a). The nanoparticles were washed with water to ensure that the surface ZnO layer was covered by the antigen-binding peptide. The nanoparticles were then conjugated to the antigen-binding peptide by mixing the two solutions in a 1:1 ratio. The resulting mixture was allowed to incubate at 4 °C for 24 h to ensure that the nanoparticles were fully conjugated to the antigen-binding peptide. The conjugated nanoparticles were then washed with water to remove any unbound peptide. The resulting nanoparticles were then used for in vivo and in vitro experiments.
composition and nanostructure of the nanoparticles were further confirmed by transmission electron microscopy (TEM) equipped with energy dispersive X-ray spectroscopy (EDX) (Fig. 1b). The point-probe TEM–EDX analysis revealed that a single nanoparticle consists of two compositions of Fe and Zn, corroborating that the ZnO coating process is completed after core formation, and the ZnO composition sits on the surface of the Fe3O4 core. The nanoparticles were stable against aggregation after re-dispersion in phosphate buffered saline (Fig. 1c). Under an external magnetic field, the nanoparticles changed from an opaque homogeneous dispersion to a clear and transparent solution within 5 min (Fig. 1c). Magnetic measurements (Fig. 1d) quantitatively revealed well-defined superparamagnetic responses and near-zero coercivity, a property suitable for magnetic actuation and manipulation. As a result of the increase in mass from the addition of non-magnetic ZnO, the saturation magnetization (\(M_s\)) of the nanoparticles decreased to 14.7 e.m.u. g\(^{-1}\) (‘core only’ \(M_s = 36.7\) e.m.u. g\(^{-1}\)), showing the effect of coating.

The ultraviolet-visible spectrum of the nanoparticle exhibited absorption at \(\sim 360\) nm, as expected for the bandgap excitation of ZnO, and the photoluminescence spectra included the major peak emission at \(470\) nm (Fig. 1e), which were related to surface broad visible emission bands ranging from 370 to 500 nm with ZnO, the saturation magnetization (\(M_s\)) of the nanoparticles decreased to 14.7 e.m.u. g\(^{-1}\) (‘core only’ \(M_s = 36.7\) e.m.u. g\(^{-1}\)), showing the effect of coating.

The point-probe TEM–EDX analysis revealed that a single nanoparticle consists of two compositions of Fe and Zn, corroborating that the ZnO coating process is completed after core formation, and the ZnO composition sits on the surface of the Fe3O4 core. The nanoparticles were stable against aggregation after re-dispersion in phosphate buffered saline (Fig. 1c). Under an external magnetic field, the nanoparticles changed from an opaque homogeneous dispersion to a clear and transparent solution within 5 min (Fig. 1c). Magnetic measurements (Fig. 1d) quantitatively revealed well-defined superparamagnetic responses and near-zero coercivity, a property suitable for magnetic actuation and manipulation. As a result of the increase in mass from the addition of non-magnetic ZnO, the saturation magnetization (\(M_s\)) of the nanoparticles decreased to 14.7 e.m.u. g\(^{-1}\) (‘core only’ \(M_s = 36.7\) e.m.u. g\(^{-1}\)), showing the effect of coating.

The ultraviolet-visible spectrum of the nanoparticle exhibited absorption at \(\sim 360\) nm, as expected for the bandgap excitation of ZnO, and the photoluminescence spectra included the major peak emission at \(470\) nm (Fig. 1e), which were related to surface broad visible emission bands ranging from 370 to 500 nm with peak emission at \(470\) nm (Fig. 1e), which were related to surface and defect emissions.\(^{33–35}\) Incorporation of the nanoparticles into DCs increased the mean fluorescent intensity by \(\sim 70\%\) compared with the DCs alone when analysed by flow cytometry (excitation at \(355\) nm and emission at \(425–475\) nm, Supplementary Fig. S1). Excitation and emission wavelengths above \(400\) nm are biomedically relevant because of their applicability in fluorescence assays using a flow cytometer or confocal microscope.

To make use of the nanoparticle as an antigen carrier, we genetically fused inorganic-binding peptides to a protein antigen\(^{36}\). A novel ZnO-binding peptide (ZBP; amino acid sequence, RPHRKGGDA) was designed based on known peptide sequences showing specific affinity to ZnO.\(^{37,38}\) This novel peptide consisted of a conserved ZnO-binding motif (RPHRK) and a linker (GGDA) to allow for flexibility (Fig. 2a)\(^{38}\). To enhance the binding affinity to ZnO, we further generated a triplicate tandem repeat of the peptide (3 × ZBP). This 3 × ZBP showed enhanced binding to the nanoparticle compared to the 1 × ZBP (Supplementary Fig. S2). The binding of each peptide was saturated when \(\sim 1\) mg of peptide (equivalent to \(\sim 1\) nmol for 1 × ZBP and \(\sim 0.3\) nmol for 3 × ZBP) was used for 100 \(\mu\)g of nanoparticle, resulting in \(\sim 3–10\) pmol of peptide binding per 1 mg of nanoparticle. The binding affinity of ZBP to nanoparticles was determined by isothermal titration calorimetry (Fig. 2b,c and Supplementary Table S1), \(\sim 3.9\) molecules of 1 × ZBP or \(\sim 2.3\) molecules of 3 × ZBP bound per nanoparticle. As expected, 3 × ZBP (\(K_a = 1.4 \times 10^6\) M\(^{-1}\)) bound to the nanoparticle approximately twice as strongly as 1 × ZBP (\(K_a = 6.9 \times 10^5\) M\(^{-1}\)) (Supplementary Table S1). The binding constant of 3 × ZBP is comparable to those of strong inorganic binders with \(K_a\) values ranging from \(1 \times 10^4\) to \(1 \times 10^8\) M\(^{-1}\) (ref. 39). The high affinity of the peptide to the nanoparticle further suggests the presence of Zn ions on the nanoparticle surface.

To generate a complex between a tumour antigen, CEA\(^{30}\) and nanoparticle, the recombinant 3 × ZBP–CEA fusion protein was incubated with the nanoparticles. Approximately 0.08 \(\mu\)g (\(\sim 2\) pmol) of CEA protein showed saturated binding to 1 mg of nanoparticle, whereas up to 1 mg (\(\sim 25\) pmol) of 3 × ZBP–CEA fusion protein could interact with the same amount of nanoparticle. Therefore, the interaction of the recombinant CEA with 3 × ZBP was enhanced \(\sim 12\)-fold over that of the CEA without 3 × ZBP (Fig. 2d), demonstrating that the tumour antigen could be immobilized efficiently and directly on the nanoparticle when fused with ZBP.

We further investigated the in vitro release kinetics of 3 × ZBP from nanoparticles dispersed in cell culture medium containing...
and presentation by DCs. The release of antigen within cells can promote antigen processing by DCs without losing them into the medium, and the continuous release of antigen is important for antigen delivery into DCs in vitro. Similar to conventional Fe3O4 nanoparticles, the Fe3O4–ZnO nanoparticles bind peptides stably associated with nanoparticles in culture medium for up to 10% fetal bovine serum (FBS). The peptides bound to nanoparticles were dissociated from the nanoparticles, and half of the bound peptides were dissociated from the nanoparticles, and were not detectable by day 3. The 1 × ZBP demonstrated similar in vitro release kinetics (Supplementary Fig. S3). The stable association of the peptides with nanoparticles for up to 4 h in cell culture medium may enhance antigen delivery into DCs without losing them into the medium, and the continuous release of antigen within cells can promote antigen processing and presentation by DCs.

Delivery of core–shell nanoparticles into DCs
Phagocytic immature DCs were incubated with 100 µg ml⁻¹ Fe3O4 of nanoparticles or Fe3O4–ZnO nanoparticles for different durations (Fig. 3a,b). Interestingly, the Fe3O4–ZnO nanoparticles were taken up by the DCs much more efficiently than the Fe3O4 nanoparticles for the first 8 h, although there was no significant difference after 20 h of incubation. More than 95% of DCs took up substantial amounts of Fe3O4–ZnO nanoparticles after 1 h of incubation (Fig. 3a), which is comparable to a former report for ZnO nanoparticles.40 This suggests that the ZnO shell could facilitate the intracellular delivery of nanoparticles and reduce the incubation time for labelling DCs. More than 95% of DCs took up substantial amounts of Fe3O4–ZnO nanoparticles after 1 h of incubation (Fig. 3a), which is comparable to a former report for ZnO nanoparticles.40 Considering that the labelling of DCs with conventional Fe3O4 nanoparticles requires an enhancing agent such as protamine sulphate42 or long incubation periods (typically 16–48 h),43,44 the core–shell nanoparticles are far better than conventional Fe3O4 nanoparticles in that they require only 1 h incubation and no transfection agents or surface modification.

Photoluminescence of the ZnO44 allowed the nanoparticles to be examined using confocal microscopy after delivery into the DC cytosol (Fig. 3c and Supplementary Fig. S4). When the nanoparticle-labelled DCs were excited at a wavelength of 405 nm, the cells showed higher fluorescent intensity at broad emission wavelengths ranging from 465 to 679 nm. However, the peak emission was observed at 529–550 nm, which can be easily detected by a conventional flow cytometer or confocal microscope (Supplementary Fig. S4). The nanoparticles dispersed throughout the cytoplasm and were found in aggregated forms (Fig. 3c), which might have been taken up by phagocytosis.39,45 3 × ZBP immobilized on the nanoparticles was also efficiently delivered into the cytoplasm of DCs (Fig. 3d), and formed peptide aggregates that partially co-localized with endosomes or lysosomes (Fig. 3d), indicating the peptide–nanoparticle complexes were internalized through phagocytosis. When 3 × ZBP–CEA nanoparticle complexes were incubated with cells, the mean fluorescent intensity, representing the intracellular contents of CEA, increased by a factor of ~6 compared to that of CEA alone (Fig. 3e). This suggests that immobilization of CEA onto core–shell nanoparticles using 3 × ZBP can facilitate intracellular uptake of tumour antigen by DCs.

To evaluate the cellular toxicity of the nanoparticles, we incubated DCs with different amounts of nanoparticles (12.5–400 µg ml⁻¹) for 3 days or with 100 µg ml⁻¹ nanoparticles for 1 to 7 days, and observed no significant changes in viability (Supplementary Fig. S5). In addition, the surface expression of the maturation markers (MHC II, CD40, CD80 and CD86) on the DCs was not significantly affected by the nanoparticle loading (Supplementary Fig. S6). The antigen-capturing and processing capacity of DCs reversibly reduces as they mature.46 Therefore, rapid and efficient antigen uptake without DC maturation followed by DC activation using lipopolysaccharide (LPS) or cytokine cocktails might facilitate efficient antigen presentation after DC maturation, which...
These results indicate that labelling $1 \times 10^6$ DCs with $100 \mu g$ ml$^{-1}$ of Fe$_3$O$_4$ nanoparticles or Fe$_3$O$_4$–ZnO nanoparticles after incubation for the indicated time. Optical intensities of 100 randomly selected cells from each sample in a. Error bars, standard error of the mean. Fluorescence images of DCs loaded with nanoparticle–3 × ZBP complexes. Intracellular 3 × ZBP (green) was stained together with EEA1 (endosomes) or LAMP2 (lysosomes). Flow cytometric analysis of DCs incubated with nanoparticle–recombinant CEA complexes. The mean fluorescence intensities of intracellular CEA (line) were shown within the histograms. Grey histogram, isotype control.

Figure 3 | Intracellular delivery of the nanoparticles into DCs. a. Intracellular nanoparticles visualized by DAB-enhanced Prussian blue staining of DCs labelled with $100 \mu g$ ml$^{-1}$ of Fe$_3$O$_4$ nanoparticles or Fe$_3$O$_4$–ZnO nanoparticles after incubation for the indicated time. b. Optical intensities of 100 randomly selected cells from each sample in a. c. Fluorescence images of DCs loaded without (top) or with (bottom) nanoparticles (green). Nuclei (blue) were stained with ToPro-3. DIC, differential interference contrast. d. Fluorescence images of DCs incubated with nanoparticle–3 × ZBP complexes. Intracellular 3 × ZBP (green) was stained together with EEA1 (endosomes) or LAMP2 (lysosomes). e. Flow cytometric analysis of DCs incubated with nanoparticle-recombinant CEA complexes. The mean fluorescence intensities of intracellular CEA (line) were shown within the histograms. Grey histogram, isotype control.

Detection of nanoparticle-labelled DCs by MRI

DCs were incubated with different amounts of nanoparticles (0–160 μg ml$^{-1}$) to determine the optimal concentration for MRI (Fig. 4a). MRI of the DCs in vitro revealed that the T2 relaxation time reduced gradually (image was darkened), with maximal saturation at 160 μg ml$^{-1}$ (Fig. 4a). To define the optimal incubation time, DCs were cultured in the presence of 40 μg ml$^{-1}$ of the nanoparticles for 0.5–4 h. The DCs were saturated with the nanoparticles within 1 h (Fig. 4b), indicating that the nanoparticles were efficiently taken up by the DCs within this period, as observed in the experiment using Prussian blue (Fig. 3a), and showed a sufficient reduction of T2 relaxation time under MRI. As expected, MRI of the core–shell nanoparticle-labelled cells showed a more rapid reduction in T2 relaxation time in the first 4 h than for the Fe$_3$O$_4$-labelled DCs (Fig. 4b). These results indicate that labelling $1 \times 10^6$ DCs with 40 μg ml$^{-1}$ of nanoparticle for 1 h provided sufficient signal reduction in MRI.

Nanoparticle-labelled cells were injected into the hind footpads of C57BL/6 mice to monitor DC trafficking by MRI in vivo. The popliteal lymph nodes were monitored for signs of DC migration from the injected footpads using a T2-weighted multigradient echo MR sequence. At 48 h after injection, localized hypointense regions within the left lymph nodes were identified, indicating the presence of the nanoparticle-labelled cells (Fig. 4c, left panel, red arrow). As expected, T2 reduction was not observed in the poplitel lymph nodes corresponding to the injection sites of DCs labelled with ZnO nanoparticles (Fig. 4c, left panel, yellow arrow). The nanoparticle-labelled DCs were observed in the central parts of the draining lymph nodes, indicating that the T2 reduction was due to the nanoparticle-labelled DCs, rather than free nanoparticles transported via the lymphatic vessels. The free nanoparticles were generally localized at the subcapsular region of the lymph node after being transported through lymphatic vessels. When cell-free nanoparticles (500 μg) were injected directly into the footpads, we could not observe any significant signal reduction in the draining lymph node (Fig. 4c, right panel, green arrow). A combination of 3,3′-diaminobenzidine (DAB)-enhanced Prussian blue staining and immunohistochemistry of the dissected lymph node revealed that nanoparticle-labelled DCs were mostly within the central Thy1.2$^+$ T-cell areas but not in the B220$^+$ B-cell follicles (anti-Thy1.2, upper panel of Fig. 4d; anti-B220, lower panel). In contrast, no iron was detected in the control lymph nodes corresponding to the injection sites of DCs labelled with ZnO nanoparticles (data not shown). These results clearly indicate that migratory DCs loaded with nanoparticles, and not passive transport of nanoparticles, is responsible for the signal reduction in the central T-cell zone of draining lymph nodes observed by MRI.

© 2011 Macmillan Publishers Limited. All rights reserved.
Other DC groups (Supplementary Fig. S7). These results show that DCs pulsed with nanoparticle/3 × ZBP–CEA can efficiently generate CEA-specific cellular immunity in vivo.

Compared with the control groups, tumour growth was significantly suppressed in mice immunized with DC(nanoparticle/3 × ZBP–CEA) (Fig. 6a, left panel). At day 40 following tumour inoculation, all five mice treated with DC(nanoparticle/3 × ZBP–CEA) survived, whereas the mice in all other groups died (Fig. 6a, right panel). The mean survival period of mice immunized with DC(nanoparticle/3 × ZBP–CEA) was extended to 19.5 days from 10.5 days for the control groups. The delayed tumour growth and prolonged survival of tumour-bearing mice correlated with the efficiency of intracellular delivery of the tumour antigen into DCs (Fig. 3e). The therapeutic outcomes of this study were comparable to those of our previous work using a protein-transduction domain, Tat, as a CEA antigen delivery tool4, suggesting that the current nanoparticle-based system is as efficient as the conventional protein transduction system. The anti-tumour immunity of this DC formulation was further validated using a transgenic mouse spontaneously expressing human CEA (Fig. 6b). CEA-transgenic mice are tolerant to this self-antigen and therefore provide a potential preclinical model to assess the induction of anti-CEA immune responses31,47. When the transgenic mice were immunized with DC(nanoparticle/3 × ZBP–CEA), tumour growth was significantly suppressed compared to the control groups (Fig. 6b). This strongly suggests that DCs pulsed with nanoparticle/3 × ZBP–CEA

Figure 4 | In vitro and in vivo MRI of nanoparticle-labelled DCs. a, In vitro MRI image (top) of DCs labelled with different amounts of Fe3O4–ZnO nanoparticles for 1 h and T2 relaxation time plot (bottom). b, In vitro MRI images (top) and T2 relaxation time plot (bottom) of DCs incubated with 40 μg ml−1 Fe3O4–ZnO or Fe3O4 nanoparticles for the indicated time. c, In vivo MRI images of draining lymph nodes of a mouse (left) injected with DCs labelled with Fe3O4–ZnO (red arrow) or ZnO nanoparticles (yellow arrow) into the ipsilateral footpads. Right shows a draining lymph node (green arrow) of cell-free Fe3O4–ZnO nanoparticle-injected mouse. d, Representative immunohistochemistry of draining lymph node after injection with Fe3O4–ZnO nanoparticle-labelled DCs (dark brown dots). T, T-cell zone (Thy1.2+), B, B-cell follicle (B220+).
In this study, we demonstrated cancer immunotherapy using DCs pulsed with multifunctional core–shell nanoparticles consisting of a superparamagnetic Fe3O4 core covered with a photonic ZnO shell. The nanoparticles provided simple and consistent tracking and induction of strong anti-CEA immune responses, even in an immune-tolerant host. The ability of the nanoparticles to efficiently be loaded into DCs in a short incubation period (~1 h) without surface modifications or transfection agents may expedite clinical trials. It might be possible to bypass the complex chemical modifications of the Fe3O4 surface that are generally performed in an organic environment to conjugate tumour antigens, a step that has the potential to alter their antigenicity. When combined with a tumour-associated antigen, nanoparticle-loaded DCs did not show changes in viability and phenotype. Taken together, the core–shell nanoparticle could be applied in diverse DC-based immunotherapies that need to monitor antigens, a step that has the potential to alter their antigenicity.

Conclusions

Taken together, the core–shell nanoparticle could be applied in diverse DC-based immunotherapies that need to monitor antigens, a step that has the potential to alter their antigenicity.
Methods

Synthesis and characterization of Fe₃O₄-ZnO core–shell nanoparticles. The Fe₃O₄-ZnO nanoparticles were prepared using a modified nanomelusion method. The Fe₃O₄ core was generated by reduction of iron(III) acetylacetonate (Fe(acac)₃, 99.9%, Aldrich) in octyl ether (C₈H₁₇O₂H₃, 99%, Wako) in the presence of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO, Aldrich) and 1,2-hexanediol (C₆H₁₂Oₓ(CH₂OH)ₓ, 90%, Aldrich). The solution was homogenized at a high temperature (300 °C) under vigorous stirring for nucleation and formation of the Fe₃O₄ nanoparticles. After cooling to room temperature, zinc acetylacetonate (Zn(acac)₂, 99.9%, Aldrich) and 1,2-hexanediol were added to the solution to coat the ZnO shells. The reaction profile was started by heating the solution, homogenizing it, rapidly heating to 300 °C and refilling to the same temperature. Ethanol was then added to the product mixture to precipitate the nanoparticles, which were purified several times and then separated by centrifugation.

The morphology, composition and nanostructure of the nanoparticles were measured by TEM (JEOL JEM-2100F) equipped with EDX. To prepare the samples for TEM measurement, nanoparticles dispersed in hexane were dropped onto carbon-supported copper grids. A vibrating sample magnetometer (Lakeshore 7300) was used to perform magnetic measurements. The optical properties of the nanoparticles were investigated by ultraviolet-visible spectroscopy (Agilent 8453E) and spectrophotofluorometry (Shimadzu RF-5301PC).

Design and preparation of ZnO-binding peptide. To design the ZBP, sequences of high-affinity ZnO binding patterns were collected from the referenced studies. Clustering of the high-affinity binding peptides revealed the existence of the motif. A sequence logo was applied to find the most frequent sequence pattern. Graphical representation of the sequence logo indicated the Zn binding motifs RPHRs and RPHRK (Fig. 2a). High-affinity ZnB frequently contains the RXXRXR motif, suggesting its important role in ZnO binding. In addition, tandem repeats of the ZnO binding motifs were collected from the referenced studies and the high-affinity ZnO binding patterns were tested on the product mixture to precipitate the nanoparticles, which were purified several times and then separated by centrifugation.

The morphology, composition and nanostructure of the nanoparticles were measured by TEM (JEOL JEM-2100F) equipped with EDX. To prepare the samples for TEM measurement, nanoparticles dispersed in hexane were dropped onto carbon-supported copper grids. A vibrating sample magnetometer (Lakeshore 7300) was used to perform magnetic measurements. The optical properties of the nanoparticles were investigated by ultraviolet-visible spectroscopy (Agilent 8453E) and spectrophotofluorometry (Shimadzu RF-5301PC).

Received 3 May 2011; accepted 4 August 2011; published online 11 September 2011

References


Acknowledgements
This work was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-0001715). Y.K.K. was supported by the Leap Research Program through the National Research Foundation of Korea (2011-0016497) and the Industrial Core Technology Development Program funded by the Ministry of Knowledge Economy (10033183). S.Y.S. and N.H.C. were supported by a grant from the Innovative Research Institute of Cell Therapy funded by the Ministry of Health and Welfare (A062260). T.C.C. and J.H.M. were supported by Hi Seoul Science/Humanities Fellowship from Seoul Scholarship Foundation. The authors are grateful to N. Orazio for critical reading of the manuscript.

Author contributions
N.H.C., S.Y.S. and Y.K.K. conceived and designed the experiments. T.C.C., J.H.M., J.H.W., S.J.L., D.H.K., J.-S.Y. and S.K. performed the experiments. N.H.C., S.Y.S. and Y.K.K. analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Additional information
The authors declare no competing financial interests. Supplementary information accompanies this paper at www.nature.com/naturenanotechnology. Reprints and permission information is available online at http://www.nature.com/reprints. Correspondence and requests for materials should be addressed to Y.K.K. and S.Y.S.