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Inflammatory pain, such as arthritis pain, is a growing health 
problem1. Inflammatory pain is generally treated with opioids 
and cyclooxygenase (COX) inhibitors, but both are limited 
by side effects. Recently, resolvins, a unique family of lipid 
mediators, including RvE1 and RvD1 derived from omega-3 
polyunsaturated fatty acid, have shown marked potency in 
treating disease conditions associated with inflammation2,3. 
Here we report that peripheral (intraplantar) or spinal 
(intrathecal) administration of RvE1 or RvD1 in mice potently 
reduces inflammatory pain behaviors induced by intraplantar 
injection of formalin, carrageenan or complete Freund’s 
adjuvant (CFA), without affecting basal pain perception. 
Intrathecal RvE1 injection also inhibits spontaneous pain and 
heat and mechanical hypersensitivity evoked by intrathecal 
capsaicin and tumor necrosis factor- (TNF-). RvE1 has  
anti-inflammatory activity by reducing neutrophil infiltration, 
paw edema and proinflammatory cytokine expression. RvE1 
also abolishes transient receptor potential vanilloid subtype-1  
(TRPV1)- and TNF-–induced excitatory postsynaptic current 
increases and TNF-–evoked N-methyl-d-aspartic acid (NMDA) 
receptor hyperactivity in spinal dorsal horn neurons via 
inhibition of the extracellular signal–regulated kinase (ERK) 
signaling pathway. Thus, we show a previously unknown role for 
resolvins in normalizing the spinal synaptic plasticity that has 
been implicated in generating pain hypersensitivity. Given the 
potency of resolvins and the well-known side effects of opioids 
and COX inhibitors, resolvins may represent new analgesics for 
treating inflammatory pain.

Resolution of acute inflammation, once thought to be a passive pro­
cess, is now shown to involve active biochemical programs that enable 
inflamed tissues to return to homeostasis2. The actions of proresolu­
tion mediators differ from currently used anti-inflammatory thera­
peutics. For example, inhibitors of COX and lipoxygenases disrupt 
resolution, because these enzymes are also required for the biosynthe­
sis of proresolution mediators4–6. Resolvins, such as RvD1 and RvE1, 
are biosynthesized from the omega-3 fatty acids docosahexaenoic 
acid and eicosapentaenoic acid, respectively, and show remarkable 

potency in resolving inflammation-related diseases such as periodon­
tal diseases, asthma and retinopathy2,3,7. The peripheral and central 
mechanisms of inflammatory pain are not fully understood8–11. Here 
we examined whether peripheral and central resolvins can attenuate 
inflammatory pain, and we further investigated how resolvins regulate 
the synaptic plasticity in spinal cord dorsal horn neurons that has 
been strongly implicated in the generation of persistent pain10,11.

First, we examined the actions of RvE1 in an acute inflammatory 
pain model induced by intraplantar injection of formalin in CD1 
mice. Formalin induces two phases of spontaneous pain behavior. 
The second phase is thought to be mediated via central mechanisms 
within the spinal cord12,13. We delivered synthetic resolvins to the 
mouse spinal cord via the intrathecal route by lumbar puncture14,15. 
Preemptive injection of RvE1 at very low doses, only 0.3 and 1.0 ng 
(that is, 1 and 3 pmol), decreased second-phase (10–45 min) but not 
first-phase pain behavior (0–10 min), suggesting a central mechanism 
of action for RvE1 (Fig. 1a,b). Notably, the effective dose range of 
RvE1 was much lower than that of either morphine or the COX-2 
inhibitor NS-398 (Fig. 1c).

Next, we investigated whether RvE1’s antinociceptive action is 
mediated by specific receptors. ChemR23, which is associated with 
the G protein subunit Gαi, has been identified as RvE1’s receptor16,17.  
Spinal injection of the Gαi inhibitor pertussis toxin abrogated  
the action of RvE1 (Fig. 1d), suggesting a possible involvement of  
G protein–coupled receptors (GPCRs). Opioid receptors did not 
mediate the antinociceptive action of RvE1, as the opioid receptor 
antagonist naloxone reversed the effect of morphine but not that 
of RvE1 (Fig. 1d). Chemerin, a peptide agonist for ChemR23  
(ref. 18), also attenuated formalin-induced second-phase pain in a 
dose-dependent manner (Fig. 1e). Notably, knockdown of ChemR23 
with a specific siRNA abolished the antinociceptive actions of RvE1 
(Supplementary Fig. 1). In situ hybridization revealed expression of 
ChemR23 mRNA in the dorsal root ganglion (DRG) and spinal cord 
(Fig. 1f). Double staining further showed expression of ChemR23 pro­
tein in DRG neurons that express TRPV1 (Fig. 1g and Supplementary 
Fig. 2) and in spinal cord cells that express the neuronal marker 
NeuN (Supplementary Fig. 3a–c). We also found ChemR23 in axons 
of DRG neurons (Fig. 1g) and primary afferent terminals in the  
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spinal cord (Supplementary Fig. 3d). Therefore, RvE1 might attenu­
ate inflammatory pain via ChemR23 expressed in DRG and spinal 
cord neurons.

Intraplantar injection of CFA elicits persistent inflammatory pain 
for weeks19. Intrathecal resolvins, given on day 3 after CFA injec­
tion, when heat hyperalgesia (reduction of paw withdrawal latency) is 
fully developed (Fig. 2a), attenuated hyperalgesia in a dose-dependent 
manner (Fig. 2b,c). Notably, 10 ng of RvE1 produced an ~75% reduc­
tion in hyperalgesia 15 min after administration (Fig. 2b). A meta-
analysis previously showed that dietary omega-3 fatty acids alleviate 
inflammatory joint pain in patients20. The omega-3 fatty acids eicos­
apentaenoic acid and docosahexaenoic acid, the respective precursors 
of RvE1 and RvD1, also reduced the severity of CFA-evoked heat 
hyperalgesia (Fig. 2b). But the effective doses of eicosapentaenoic 
acid and docosahexaenoic acid required were 10,000 times higher 
than that of RvE1 (Fig. 2b). For direct comparison, 10 ng RvE1 was 
more potent than 10 µg of the COX-2 inhibitor NS-398 (Fig. 2c). 
Notably, a stable analog, 19-(p-fluorophenoxy)-RvE1 (19-pf-RvE1), 
designed to resist rapid local metabolic inactivation of RvE1 (ref. 21), 
reduced hyperalgesia for 6 h (Fig. 2c). By contrast, a further meta­
bolic product of RvE1, 18-oxo-RvE1 (ref. 21), was essentially inac­
tive (Fig. 2c). Although RvE1 potently reduced inflammatory pain, 

it did not alter baseline sensory thresholds in naive mice (Fig. 2d).  
These findings suggest that resolvins have a unique role in the 
normalization of inflammatory pain.

We further investigated the peripheral role of resolvins in carrageenan-
elicited pain and inflammation. Intraplantar pretreatment with RvD1 
and RvE1 substantially attenuated carrageenan-induced heat hyper­
algesia (Fig. 2e). As expected, RvE1 had marked anti-inflammatory 
effects, reducing carrageenan-induced edema, neutrophil infiltration 
and expression of proinflammatory cytokines (for example, TNF-α, 
interleukin-1β (IL-1β) and IL-6) and chemokines (for example, mono­
cyte chemotactic protein-1 and macrophage inflammatory protein-1α)  
in inflamed hindpaws (Fig. 2f–h and Supplementary Fig. 4). Intra­
plantar RvE1 also rapidly attenuated formalin-induced acute pain 
(Supplementary Fig. 5a).

To determine the potential mechanisms by which resolvins 
attenuate inflammatory pain, we examined the impact of RvE1 
on TNF-α signaling, because TNF-α is a key contributor to the 
genesis of inflammation and pain via both peripheral22,23 and 
central24 mechanisms. Indeed double knockout mice lacking 
both Tnfr1 and Tnfr2 (Tnfrsf1a−/−;Tnfrsf 1b−/−) showed a marked 
attenuation in CFA-elicited heat hyperalgesia and formalin-elicited 
second-phase pain (Fig. 3a). Intrathecal injection of TNF-α also 
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Figure 1  Preemptive spinal (intrathecal) administration of RvE1 reduces the second phase of formalin-induced inflammatory pain. (a,b) Reduction 
of the second phase of formalin-induced spontaneous pain by RvE1, morphine and the COX-2 inhibitor NS-398. (a) Time course. *P < 0.05 
(vehicle versus RvE1). (b) First and second phase. *P < 0.05 versus vehicle, n = 5–8 mice. (c) Dose-response curve of percentage inhibition (versus 
vehicle control) of RvE1, morphine and NS-398 on the second phase of formalin-induced pain. n = 5–8 mice. (d) Reversal of RvE1-mediated 
inhibition of second phase pain by pertussis toxin (PTX) but not naloxone. NS, not significant. *P < 0.05, n = 5–7 mice. (e) Dose-dependent 
reduction of second-phase pain by the ChemR23 agonist chemerin. *P < 0.05 versus vehicle, n = 6 mice. (f) Expression of ChemR23 mRNA in the 
DRG and spinal cord dorsal horn, as revealed by in situ hybridization. Scale bars, 50 µm. (g) Colocalization of ChemR23 with TRPV1 in a cultured 
DRG neuron (top) and with NeuN in the superficial dorsal horn (bottom), as demonstrated by double immunostaining. Scale bars, 25 µm. All data 
are means ± s.e.m.
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evoked marked heat hyperalgesia, which was abrogated in mice 
lacking Trpv1, a crucial gene for generating heat hyperalgesia25. 
In contrast, formalin-induced second-phase spontaneous pain 
was unaltered in Trpv1−/− mice (Fig. 3b). Spinal administration 
of RvE1 substantially reduced TNF-α–induced heat hyperalgesia 
(Fig. 3c). Hence, RvE1 can alleviate both TRPV1-dependent and 
TRPV-independent inflammatory pain symptoms.

To determine whether resolvins modulate spinal cord synaptic plas­
ticity, which is thought to underlie persistent inflammatory pain10,11, 
we used a patch-clamp technique to record spontaneous excitatory 
postsynaptic currents (sEPSCs) in lamina II neurons ex vivo in isolated 
spinal cord slices from mice. Perfusion of spinal cord slices with TNF-α  
induced an increase in the frequency but not amplitude of sEPSCs  
(Fig. 3d), suggesting a presynaptic effect of TNF-α achieved by increas­
ing glutamate release from axonal terminals24. Notably, RvE1 alone did 
not alter basal synaptic transmission but did block the TNF-α–induced 
increase in sEPSC frequency (Fig. 3d). The TRPV1 antagonist capsazepine 
also reduced this increase in sEPSC frequency by TNF-α (Fig. 3d),  
in parallel with earlier results that TNF-α increased TRPV1 activity in 
DRG neurons26,27. Direct activation of TRPV1 by capsaicin (100 nM) 
elicited a twofold increase in sEPSC frequency that was completely 
blocked by RvE1 (Fig. 3e). Like RvE1, chemerin also abolished this fre­
quency increase by capsaicin in a pertussis toxin–dependent manner, 
suggesting the involvement of ChemR23 (Fig. 3e and Supplementary 
Fig. 6). Notably, intrathecal capsaicin elicited acute spontaneous pain for 
<10 min, and intrathecal RvE1 prevented this induction of acute pain 
(Fig. 3f). In parallel, peripheral RvE1 reduced intraplantar capsaicin- 
induced acute pain (Supplementary Fig. 5b). These results further 

establish that RvE1 attenuates inflammatory pain by blocking TRPV1 
and TNF-α signaling, presumably at presynaptic sites.

Next, we investigated whether resolvins modulate synaptic plas­
ticity via the ERK signaling pathway, because previous studies have 
reported that ChemR23 regulates ERK signaling in non-neuronal 
cells18, ERK activation in DRG neurons increases TRPV1 activity28 
and ERK modulates neurotransmitter release via phosphorylation 
of synapsin I29. We inhibited the ERK pathway with the mitogen-
activated protein kinase kinase (MEK) inhibitors U0126 and PD98059 
and found that both blocked the capsaicin-induced sEPSC increase, 
indicating a role for ERK in regulating presynaptic glutamate release 
in the spinal cord (Fig. 3e). In dissociated DRG neurons, both TNF-α 
and capsaicin elicited increases in phosphorylation of ERK (pERK), 
and RvE1 abolished these increases (Fig. 3g). Thus, RvE1 might 
attenuate inflammatory pain by blocking ERK-mediated glutamate 
release in presynaptic terminals in response to TNF-α stimulation 
and TRPV1 activation (Fig. 3h).

Apart from heat hyperalgesia, CFA and intrathecal TNF-α  
produced another cardinal feature of inflammatory pain, 
mechanical allodynia (a reduction in paw withdrawal threshold). 
Intrathecal RvE1 also attenuated mechanical allodynia induced 
by TNF-α or CFA (Fig. 4a and Supplementary Fig. 7a,b). Of 
note, TNF-α–induced mechanical allodynia was TRPV1 inde­
pendent (Fig. 4b). To define potential mechanisms by which 
RvE1 attenuates mechanical allodynia, we examined the activa­
tion of glutamate NMDA receptors (NMDARs) in dorsal horn 
neurons, which results in hyperactivity of these neurons (cen­
tral sensitization) and, subsequently, mechanical allodynia10,19. 
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We measured the activity of NMDARs by recording NMDA-
induced currents in dorsal horn neurons. TNF-α significantly 
potentiated NMDA currents, and RvE1 reduced this potentiation  
(Fig. 4c). We further assessed whether RvE1 inhibits NMDAR acti­
vation via the ERK pathway, as ERK phosphorylation in dorsal horn 
neurons serves as a marker for central sensitization13,30. Perfusion 
of spinal slices with TNF-α induced robust ERK phosphorylation 
primarily in superficial dorsal horn neurons, and RvE1 treatment 
reduced the phosphorylation (Fig. 4d). We found that ERK medi­
ates central sensitization via activation of NMDARs in postsynaptic 
dorsal horn neurons, because the MEK inhibitors PD98059 and 
U0126, but not capsazepine, blocked TNF-α–induced NMDAR 
activation (Fig. 4e). Thus, we postulate that RvE1 also attenuates 
inflammatory pain by inhibiting ERK-mediated NMDAR activation 
in postsynaptic dorsal horn neurons (Fig. 4f).

In addition to dampening behavioral hypersensitivity in inflamma­
tory pain conditions, resolvins also reduced mechanical or heat hyper­
algesia in other persistent pain states, including incision-induced  

postoperative pain (Supplementary Fig. 7c) and nerve injury– 
induced neuropathic pain (Supplementary Fig. 7d).

In summary, these results show that resolvins, at very low doses 
(0.3–20 ng), effectively reduce inflammatory pain symptoms in 
several mouse models, through both peripheral and central actions. 
Biosynthesized during resolution of acute inflammation, resolvins 
are known to act on immune cells via anti-inflammatory mechanisms 
(for example, reducing polymorphonuclear leukocyte infiltration 
and tissue injury) and proresolving actions (for example, increas­
ing phagocytic activity of macrophages)2. As expected, peripheral 
administration of RvE1 reduced carrageenan-elicited expression of 
proinflammatory cytokines, neutrophil infiltration and paw edema. 
Because proinflammatory cytokines such as TNF-α and IL-1β  
are indispensable for the pathogenesis of inflammatory pain  
(Fig. 3a,b)24,31, the antinociceptive effects of resolvins could be attribut­
able to its anti-inflammatory role. Also, it is noteworthy that we show 
here a previously undescribed mechanism in pain resolution where RvE1 
rapidly, within minutes, decreases inflammatory pain by modulating  
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Figure 3  Spinal administration of RvE1 reduces heat 
hyperalgesia and spontaneous pain by blocking TRPV1  
and TNF-α signaling in DRG neurons and spinal presynaptic 
terminals. (a) CFA-induced heat hyperalgesia and formalin-
induced second-phase pain in wild-type and Tnfrsf1a−/−; 
Tnfrsf1b−/− mice. (b) TNF-α–induced heat hyperalgesia  
and formalin-induced second-phase spontaneous pain in 
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synaptic plasticity in dorsal horn neurons. RvE1 not only abolished 
TRPV1-induced increases in EPSC frequency and spontaneous pain but 
also blocked TNF-α–induced increases in EPSC frequency and NMDAR 
hyperactivity. Activation of the GPCR ChemR23 and inactivation of the 
ERK signaling pathway in both presynaptic and postsynaptic neurons 
are required for the antinociceptive effects of RvE1.

Current treatments for inflammatory pain are limited by their 
side effects, for example, respiratory depression, sedation, nausea, 
vomiting, constipation, dependence, tolerance and addiction after 
opioid treatment32,33 and serious cardiovascular effects associated 
with long-term use of COX-2 inhibitors1,34. Additionally, COX-2 
inhibitors and local anesthetics impair the resolution of acute inflam­
mation4,6. Although enthusiasm for the use of TRPV1 antagonists is 
high, these drugs can cause hyperthermia35 and have limited effects 
on mechanical allodynia. Our results show that resolvins attenuate 
inflammatory pain without changing basal pain sensitivity. Given 
the antihyperalgesic efficacy of resolvins and the safety associated 
with endogenous mediators, resolvins and their metabolically stable 
analogs may represent a new family of analgesics useful in treating 
inflammation-associated pain states such as arthritic and post­
operative pain. This new analgesic function adds to the beneficial  
anti-inflammatory and proresolving effects of resolvins2.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturemedicine/.

Note: Supplementary information is available on the Nature Medicine website.
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ONLINE METHODS
Mouse and pain models. We used adult CD1 mice (male, 25–32 g) for most 
experiments, obtained from Charles River Laboratories. We also used double 
knockout mice lacking both TNFR-1 and TNFR-2 (Tnfrsf1a−/−;Tnfrsf1b−/−) 
or TRPV1 (Trpv1−/−) and C57BL/6 wild-type control mice from Jackson 
Laboratories. All mouse procedures were approved by the Harvard Medical 
Area Standing Committee on Animals. We injected 20 µl of diluted formalin 
(5%, Sigma), carrageenan (1%, Sigma) or complete CFA (Sigma) into the 
plantar surface of the hindpaw to induce acute, persistent or chronic inflam­
matory pain, respectively. We also induced postoperative pain through hind­
paw incision36 and neuropathic pain by ligation of the spinal nerve37.

Resolvin administration. Synthetic RvE1 and RvD1 were obtained from 
Cayman Chemical and were qualified according to published physical and 
biological properties21. We suspended RvE1 and RvD1 in 1% or 10% ethanol 
vehicle and investigated acute (<1 h) and persistent (1–6 h) pain. We delivered 
the reagents (10 µl) via intrathecal injection made by a spinal cord puncture 
between the L5 and L6 levels with a 30-gauge needle38. Detailed methodology 
is described in the Supplementary Methods.

Immunohistochemistry. We deeply anesthetized mice with isoflurane and 
perfused them through the ascending aorta with 4% paraformaldehyde. We 
removed spinal cord (L4–L5 segment) and DRG (L4, L5) tissues and postfixed 
the spinal cord overnight and the DRG for 2 h. We cut spinal cord sections 
(30 µm, free-floating) and DRG sections (14 µm) in a cryostat and performed 
immunofluorescence. We blocked the sections with 2% goat or donkey serum 
for 1 h at 22 °C, incubated the sections with primary antibodies overnight 
at 4 °C and then incubated them with Cy3- or FITC- conjugated second­
ary antibodies (1 in 400, Jackson Immunolabs) for 1 h at 22 °C. For double 
immunofluorescence, we incubated tissue sections with a mixture of polyclo­
nal and monoclonal primary antibodies followed by a mixture of FITC- and 
CY3-congugated secondary antibodies. We also amplified ChemR23 staining 
with the TSA (Tyramide Signal Amplification, PerkinElmer) system. Detailed 
methodology is described in the Supplementary Methods.

Primary dorsal root ganglion culture. We aseptically removed DRGs from 
4-week-old mice and digested them first with collagenase (1.25 mg ml−1) and 
dispase-II (2.4 U ml−1) at 37 °C for 90 min and then with 0.25% trypsin for 
8 min at 37 °C. We mechanically dissociated DRG cells with a flame-polished 
Pasteur pipette in the presence of 0.05% DNAse I and plated these cells onto 
poly-d-lysine and laminin-coated slide chambers. We grew DRG cells in a 
neurobasal defined medium (with 2% B27 supplement, Invitrogen) in the 
presence of nerve growth factor (Roche Bioscience, 50 ng ml−1) for 24 h and 
replaced the medium with NGF-free medium before stimulation. For immuno­
cytochemistry, we fixed DRG cells with 4% paraformaldehyde for 30 min 
and incubated the cells with pERK-specific primary antibody (rabbit, Cell 
Signaling, 1 in 500) overnight.

Spinal cord slice preparation. As previously reported39, we removed a 
portion of the lumbar spinal cord (L4–L5) from young mice (3–4 week-old) 
under urethane anesthesia (1.5–2.0 g per kg body weight, intraperitoneally) 

and cut transverse spinal cord slices (600 µm) on a vibrating microslicer.  
We perfused the slices with Kreb’s solution (8 ml min−1) for >2 h before experi­
ments. We stimulated some slices with TNF-α (10 ng ml−1, 5 min), fixed slices  
with 4% paraformaldehyde for 1 h and processed thin sections (15 µm) for 
pERK immunohistochemistry13.

Patch clamp recordings in spinal slices. We performed whole-cell patch-clamp 
recordings in neurons of lamina II in voltage clamp mode39. After establishing 
the whole-cell configuration, we held neurons at holding potentials of −70 mV 
for sEPSC recording. We recorded NMDA-induced currents by bath applica­
tion of NMDA (50 µM, Sigma) at a holding potential of −50 mV. We amplified 
membrane currents with an Axopatch 200A amplifier (Axon Instruments) in 
voltage-clamp mode. We used pCLAMP 6 and Mini Analysis (Synaptosoft) 
software to store and analyze the data. We regarded those cells showing >5% 
changes from the baseline levels as responding ones24.

Behavioral analysis. We habituated mice in the testing environment for 2 d 
and performed behavioral testing in a blinded manner. We assessed formalin-
evoked spontaneous inflammatory pain by measuring the time (in seconds) 
the mice spent on licking and flinching the affected paws every 5 min for  
45 min. We also observed capsaicin-induced spontaneous pain for 10 min.  
For testing mechanical sensitivity, we put mice in boxes on an elevated 
metal mesh floor and stimulated hindpaws with a series of von Frey hairs 
with logarithmically increasing stiffness (0.02–2.56 g, Stoelting), presented 
perpendicular to the plantar surface. We determined the 50% paw withdrawal 
threshold by Dixon’s up-down method40. For testing heat sensitivity, we put 
mice in plastic boxes and tested heat sensitivity with Hargreaves radiant heat 
apparatus (IITC Life Science). We adjusted the basal paw withdrawal latency 
to 9–12 s and set a cut-off of 20 s to prevent tissue damage. We calculated the 
percentage maximal possible antinociceptive effect (% MPE) with the equation 
%MPE = [(PL − BL2) / (BL1 − BL2)] × 100, where BL1 represents baseline 
latency before inflammation, BL2 represents baseline latency after inflamma­
tion but before drug injection and PL represents latency after drug injection.

Statistical analyses. We expressed the data as means ± s.e.m. and compared 
the differences between groups with Student’s t test or analysis of variance 
followed by Newman-Keuls test. The criterion for statistical significance  
was P < 0.05.

Additional methods. Detailed methodology is described in the Supplementary 
Methods.

36.	Brennan, T.J., Vandermeulen, E.P. & Gebhart, G.F. Characterization of a rat model 
of incisional pain. Pain 64, 493–501 (1996).

37.	Kim, S.H. & Chung, J.M. An experimental model for peripheral neuropathy produced 
by segmental spinal nerve ligation in the rat. Pain 50, 355–363 (1992).

38.	Hylden, J.L. & Wilcox, G.L. Intrathecal morphine in mice: a new technique.  
Eur. J. Pharmacol. 67, 313–316 (1980).

39.	Gao, Y.J. et al. JNK-induced MCP-1 production in spinal cord astrocytes contributes 
to central sensitization and neuropathic pain. J. Neurosci. 29, 4096–4108 
(2009).

40.	Dixon, W.J. Efficient analysis of experimental observations. Annu. Rev. Pharmacol. 
Toxicol. 20, 441–462 (1980).


	Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions
	Methods
	ONLINE METHODS
	Mouse and pain models.
	Resolvin administration.
	Immunohistochemistry.
	Primary dorsal root ganglion culture.
	Spinal cord slice preparation.
	Patch clamp recordings in spinal slices.
	Behavioral analysis.
	Statistical analyses.
	Additional methods.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Preemptive spinal (intrathecal) administration of RvE1 reduces the second phase of formalin-induced inflammatory pain.
	Figure 2 Central and peripheral actions of resolvins on persistent inflammatory pain and inflammation.
	Figure 3 Spinal administration of RvE1 reduces heat hyperalgesia and spontaneous pain by blocking TRPV1 
and TNF-α signaling in DRG neurons and spinal presynaptic terminals.
	Figure 4 Spinal RvE1 administration attenuates mechanical allodynia and blocks TNF-α signaling in postsynaptic dorsal horn neurons.




