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The origin of pain and its dual role as a key physiological function 
and a debilitating disease has fascinated scientists and philosophers 
for centuries. Charles Darwin described pain as a ‘homeostatic 
emotion,’ which is essential for the survival of species1. The  
seventeenth-century philosopher René Descartes described pain 
as an outcome of the activation of a defined channel running 
from the skin to the brain, a concept that was a forerunner of two  
nineteenth-century theories that explained pain on the basis of 
either intense stimulation of any kind of nerve fibers (intensity 
hypothesis) or specific nociceptors (specificity hypothesis)2. The 
idea that pain is strictly hard-wired can explain why acute pain is 
caused upon injury to a specific part of the body, but would predict 
that pain is restricted to the injury site and should be abolished after 
healing. However, chronic pain can persist long after the initial 
injury is healed and can arise even in the absence of any obvious 
pathological trigger. Furthermore, a rigid, hard-wired pain pathway 
cannot account for the clinical observation that pathological pain 
neither obeys somatotopic borders (for example, phantom limb 
pain) nor complies with segregation of sensory modalities (for 
example, brushing or stroking of skin evokes pain after injury). 
This is perhaps best exemplified by the paradox of neuropathic 
pain—nerve loss induced by injury should lead to numbness alone, 
but can evoke chronic hypersensitivity to painful and innocuous 
stimuli instead. Therefore, the concept emerged that the neural 
substrates that mediate pain are plastic—that is, modifiable in 
a manner that depends on use or modulatory influences3. Since  
then, tremendous efforts have been made to understand the  
cellular and molecular basis of chronic pain, and the field has been 
marked by important conceptual advances, mechanistic triumphs 
and frustrating discrepancies.

Physiological pain and its conversion to chronic pain
Noxious stimuli of various modalities are sensed by a specialized set of 
nerve fibers: unmyelinated C fibers and thinly myelinated Aδ fibers, 
which are distinct from myelinated tactile sensors (Aβ fibers) and 
proprioceptors (Fig. 1a). The physicochemical properties of noxious 
stimuli, such as heat, extreme cold, pressure and chemicals, are con-
verted to electrical activity by transient receptor potential–generating 
channels (TRP channels) and purinergic channels, and this electrical 
activity is amplified by sodium channels to elicit action potentials. 
Nociceptive afferents carrying these peripheral inputs form glutama-
tergic synapses onto second-order neurons mostly in the superficial 
laminae (I and II) in the spinal dorsal horn, whereas inputs from 
non-nociceptive fibers form synapses in deeper laminae (Fig. 1a). 
Some integration and processing of sensory inputs occurs in the spinal 
dorsal horn, and the net output from spinal networks is carried by 
several pathways to distinct projection sites in the brain (Fig. 1a). For 
example, the lateral spinothalamic tract projects multimodal sensory 
inputs from spinal wide-dynamic range neurons to the lateral thala-
mus and has been implicated in processing sensory and discriminative 
aspects of pain. By contrast, the medial aspect of the spinothalamic 
tract and the spinoparabrachial tract project to the medial thalamus 
and limbic structures and are believed to mediate the emotional and 
aversive components of pain. The experience of pain is perceived in 
the cortex, and information is accordingly sent to the spinal cord to 
enable withdrawal from the noxious stimulus.

Although this experience of physiological pain serves an important 
protective function, pain can take on a disease character in pathologi-
cal states such as inflammation, neuropathy, cancer, viral infections, 
chemotherapy and diabetes. This state is manifest as hyperalgesia 
(increased sensitivity to painful stimuli; Fig. 1b). Furthermore, 
individuals with chronic pain often show disease-induced, therapy-
 resistant deviations from normal tactile sensation, such as paraethesias 
and dysesthesias. The counterpart of these changes in experimental 
animals is tactile allodynia (Fig. 1b), which represents withdrawal 
behavior in response to innocuous stimuli4. Finally, the most com-
mon complaint from individuals with chronic pain is spontaneous, 
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Central mechanisms of pathological pain
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Chronic pain is a major challenge to clinical practice and basic science. The peripheral and central neural networks 
that mediate nociception show extensive plasticity in pathological disease states. Disease-induced plasticity can 
occur at both structural and functional levels and is manifest as changes in individual molecules, synapses, cellular 
function and network activity. Recent work has yielded a better understanding of communication within the neural 
matrix of physiological pain and has also brought important advances in concepts of injury-induced hyperalgesia and 
tactile allodynia and how these might contribute to the complex, multidimensional state of chronic pain. This review 
focuses on the molecular determinants of network plasticity in the central nervous system (CNS) and discusses their 
relevance to the development of new therapeutic approaches.
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ongoing pain, which might come about through mechanisms distinct 
from those that underlie evoked pain. Whereas evoked pain has been 
well studied, spontaneous pain is only beginning to be addressed in 
experimental animals5,6. Neural plasticity is a key element of chronic 
pain and can account to a large extent for the clinical manifestations 
of chronic pain3,7.

The different forms and levels of plasticity
Dynamic changes in the neural matrix of pain can occur over several 
temporal scales (acute to chronic) and on the molecular, synaptic, 
cellular and network levels (Fig. 2).

Molecules may change in an activity-dependent manner (for 
example, by phosphorylation) and thereby alter their function (for 
example, a drop in the activation threshold of an ion channel) or 
localization (for example, endocytosis or trafficking; Fig. 2a). At the 
synaptic level, the strength of synaptic contacts can vary from a failure 
to produce any postsynaptic response at one extreme (silent synapse) 
to a state in which low levels of transmitter release can evoke action 
potentials in the target neurons (potentiated state; Fig. 2a). Classical 
postsynaptic mechanisms of synaptic potentiation result in amplified 
excitatory postsynaptic potentials in spite of unchanged neurotrans-
mitter availability and typically involve the insertion of glutamatergic 

AMPA receptors (AMPARs) into postsynaptic membranes, driven by 
activation of glutamatergic NMDA receptors (NMDARs; Fig. 2a). 
Conversely, alterations in the strength of synaptic inputs mediated, 
for example, by changing the probability of neurotransmitter release 
or quantal content, could be a key mechanism for eliciting changes 
in the net excitation of neurons, particularly at synapses with a low 
release probability under physiological conditions (Fig. 2a). Long-
term potentiation of nociceptive transmission has been reported in 
the spinal dorsal horn8 and anterior cingulate cortex (ACC)9.

Plasticity at the level of neurons in nociceptive pathways is seen 
as an increase in the magnitude of responses to a defined sensory 
stimulus, an increase in the level of spontaneous activity, or after-
discharges, which represent continued activity after the termination 
of a nociceptive stimulus (Fig. 2a), leading to central amplification 
of pain (central sensitization)7,10. Furthermore, the peripheral recep-
tive fields of neurons can expand, allowing hyperalgesia to spread to 
uninjured regions (Fig. 2a).

There is tremendous potential for plasticity at network-level 
processing of nociceptive inputs. Depending upon how the net-
works that underlie the sensory and affective dimensions of pain are 
wired and how diverse inputs are coordinated, filtered and integrated, 
entirely different outputs may emerge from the same given peripheral 
input11 (Fig. 2a). The net output of the spinal dorsal horn represents 
a balance between diverse excitatory processes and spinal inhibi-
tory interneurons (Fig. 3a), which can be disrupted in pathological 
states (Fig. 3b). For example, in naive rodents unilateral nociceptive 
stimulation evokes unilateral spinal calcium transients, and these are 
potentiated and spread contralaterally in states of peripheral inflam-
mation12 or neuropathy13 (Fig. 2a); these changes can be mimicked 
by blocking spinal GABAergic and glycinergic inhibition13.

Finally, tremendous complexity and dynamic range is added by the 
fact that plasticity not only occurs at a functional level, but can also 
take place at a structural level (Fig. 2b). Examples of this include an 
increase or a decrease in the density of synaptic spines, degeneration or 
regeneration of axons leading to aberrant connectivity, degeneration of 
neurons and proliferation of astrocytes and microglia, which influence 
nociceptive processing by releasing modulatory substances (Figs. 2b 
and 3b). Importantly, structural plasticity can account for the long-
term persistence of changes that arise in pathological pain states.

Diverse molecules modulate spinal pain processing by activating 
cell surface receptors in discrete spatial and temporal patterns 7,14,15. 
The main receptors that mediate these influences include ligand-gated 
ion channels, which regulate neuronal excitability at a scale of micro-
seconds to seconds (Fig. 4). Most prominent amongst ion channel 
receptors are NMDA and AMPA-type glutamate receptors and ATP-
gated P2X3-type ion channels7. Second, G protein–coupled receptors 
(GPCRs) are activated by diverse neurotransmitters and neuromodu-
lators, such as glutamate, adenosine, ATP, cannabinoids, opioids and 
prostaglandins, and modulate pain processing over seconds to min-
utes (Fig. 4). Finally, receptor tyrosine kinases (RTKs) are activated in 
nociceptive pathways by several growth factors16,17 (for example, trkA 
by nerve growth factor16) and act over temporal scales of minutes to 
hours (Fig. 4). In addition, signaling transducers activated by each of 
these three kinds of receptor can indirectly or directly modulate gene 
transcription, which allows long-term modulation of pain. Some of 
these mechanisms are described in more detail below.

AMPARs as determinants of spinal hyperalgesia
Glutamate is the main nociceptive neurotransmitter at the synapse 
between the primary afferent and the second-order neuron (Fig. 3a). 
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Figure 1  Pain circuits. (a,b) A schematic overview of the main circuits 
mediating physiological pain (a) and some manifestations of chronic pain (b).
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Owing to their high Ca2+ permeability and 
Mg2+ block under physiological conditions, 
NMDARs are key mediators of pathological 
pain7. Whereas NMDARs always permit Ca2+ 
entry upon activation, AMPARs encode a reg-
ulatable switch that controls glutamate-evoked 
entry of Ca2+ into neurons18. This is brought 
about by regulated expression and inclusion of 
the subunit GluA2 (GluR-B or GluR2), which 
imparts low Ca2+ permeability to AMPAR 
channels because it carries an arginine resi-
due (inserted by Q/R site RNA editing) in its 
pore-forming M2 segment18. The dorsal horn 
of the spinal horn contains an unusually high 
density of calcium-permeable AMPARs19, and 
their activation can strengthen the AMPAR-
mediated component of synaptic transmission 
in the spinal cord20.

Mice lacking the GluA1 subunit (GluR-A 
or GluR1 subunit), which is highly expressed 
in the spinal dorsal horn, show a loss of nocic-
eptive plasticity and a marked reduction in acute inflammatory hyper-
algesia21. By contrast, deletion of the GluA2 subunit, which enhances 
the permeability of AMPAR to calcium channels and modifies current 
rectification and channel conductance, leads to facilitation of nocicep-
tive plasticity and inflammatory hyperalgesia21. This indicates that 
spinal AMPARs are crucially involved in activity-dependent changes 
in synaptic processing of nociceptive inputs. Importantly, potentiation 
and spatial spread of spinal calcium transients induced by peripheral 
inflammation are lost in mice that do not possess calcium-permeable 
AMPARs, showing that GluR-A-containing AMPARs are a key source 
of calcium in spinal nociceptive laminae in pain states12.

Protein-protein interactions in spinal circuits
Various excitatory and inhibitory receptors interact with transmem-
brane proteins or cytosolic modulators, which can alter the cell surface 
expression and function of transmembrane receptors. For example, the 
long-form Homer proteins, Homer1b and Homer1c, link metabotropic 
glutamate receptors (mGluR1 and mGluR5) to sources of calcium release 
(inositol 1,4,5-triphosphate receptors) at synapses, and to transient 

receptor potential C channels, calcium channels and components of the 
NMDA receptor complex at the cell surface22,23. These interactions are 
antagonized by the short activity-dependent splice variant of the Homer1 
gene, Homer1a, which is upregulated in the spinal dorsal horn in models 
of peripheral inflammation and neuropathy in an NMDA receptor–
 dependent manner23. Homer1a strongly attenuates calcium mobilization 
induced by glutamate receptors and the subsequent activation of MAP 
kinases, thereby reducing inflammatory hyperalgesia23. Thus, activity-
 dependent upregulation of the Homer1a protein represents a negative 
feedback loop that uncouples glutamatergic receptors from intracellular 
nociceptive mediators and counteracts central sensitization.

Interactions between the AMPAR subunits GluA2 and GluA3 and 
proteins containing PDZ (postsynaptic density 65–discs large–zonula 
occludens 1) domains such as glutamate receptor-interacting protein 
(GRIP) are important for the activity-induced unsilencing of silent 
synapses in the spinal dorsal horn24. Similarly, interactions between 
GluA2 subunits and intracellular adaptor proteins such as PICK2 
and NSF have also been implicated in neuropathic sensitization of 
nociceptive inputs25. The properties and configuration of AMPARs 
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Figure 2  Disease-induced functional and 
structural plasticity in neural substrates of 
pain. (a) Different levels of activity-dependent 
functional plasticity. Molecules may become 
functionally sensitized (top), synaptic 
transmission may become potentiated by 
presynaptic mechanisms (second row, arrow to 
the left) or by postsynaptic plasticity (arrow to the 
right), cells may respond to noxious stimuli with 
increased activity and expanded receptive fields 
after injury (third row) and network function may 
change so that more cell ensembles respond to 
noxious stimuli, collectively leading to a higher 
net spinal output after injury or inflammation 
(bottom). (b) Examples of nociceptive activity-
induced structural plasticity. From the top, 
synaptic spines may increase in size and density; 
axons may sprout or degenerate; and cells 
may atrophy (for example, loss of inhibitory 
interneurons) or proliferate (for example, 
microglia and astrocytes).
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are dynamically regulated in pain states. 
Peripheral inflammation induces the inter-
nalization of the GluA2 subunit in dorsal 
horn neurons26, which is mediated by bind-
ing of GluA2 to GRIP and leads to an increase 
in the calcium permeability of AMPARs. 
Therefore, preventing the internalization of 
GluA2 subunits impairs nociceptive hyper-
sensitivity in inflammatory states26. Activity 
can also induce the insertion of new AMPARs at spinal synapses 
(Fig. 3b), which suggests that rapid activity-dependent modifica-
tion of AMPAR properties is a key mechanism for rapid short-term 
plasticity in the spinal dorsal horn27.

The Shank family of postsynaptic density (PSD) proteins, which 
work with Homer proteins to form a molecular bridge that links 
NMDARs and mGluR1 and mGluR5 in the postsynaptic space, are 
also upregulated in spinal dorsal horn neurons after peripheral 
nerve injury28. Similarly, the multivariant adaptor protein PSD95 is 
required for the coupling of NMDARs, nitric oxide (NO) synthase and  
calcium/calmodulin–dependent protein kinase IIα (CamKIIα) at the 
postsynaptic density (Fig. 3b). Mice that express a truncated form of 
PSD95 show a loss of NMDAR-mediated hyperalgesia and allodynia 
and a reduction in CamKIIα activation upon peripheral injury29. 
Nociceptive activity also switches on the expression of proteins in 
the spinal dorsal horn such as the NO inhibitory protein (NOSIP)30, 
which blocks NMDAR signaling through NO. This suggests that 
expression of NOSIP is an activity-induced defense mechanism to 
block spinal amplification of pain.

GPCR-mediated mechanisms in the spinal facilitation of pain
G proteins of the Gq/11 family couple numerous GPCRs to the acti-
vation of phospholipase Cβ (PLC-β), protein kinase C (PKC) and 
intracellular calcium release31 and mediate the facilitatory effects of 
glutamate, substance P and other neuromodulators on spinal neu-
ronal function. The Gs family proteins link GPCR activation to the 
production of cAMP and subsequent activation of protein kinase A 
(PKA)31. Numerous ion channels, GPCRs and intracellular effectors 
carry recognition sites for PKC and PKA, and both kinases have major 
roles in modulating pain processing32,33 (Fig. 4).

GPCRs also contribute to the actions of proteolytic enzymes, which 
are an exciting and newly recognized potential target for modulat-
ing nociceptive processing in the spinal cord. These serine proteases 
include members of the coagulation cascade (for example, thrombin 
factor, plasminogen and tissue plasminogen activator), proteases from 
inflammatory cells (for example, cathepsin G) and proteases from epi-
thelial tissues and neurons (for example, trypsin)34–39 (Fig. 3b). Most 

of the functions of serine proteases are carried out by cleaving and 
activating protease-activated receptors (PARs), which are a family of 
GPCRs36,37. In most tissues, PARs act by coupling to Gαq/11, Gα12/13 
and inhibitory Gαi proteins (Fig. 4). Proteases contribute to periph-
eral neurogenic inflammation by sensitizing TRP channels40 and also 
act at the spinal level to enhance neuronal excitability in inflammatory 
states34–39. Similarly, other proteases such as cathepsin35,41 and the 
matrix metalloproteases39 have been implicated in potentiating spinal 
output by mediating interactions between neurons, glia and astro-
cytes42. However, there is some evidence that spinal proteases have 
antinociceptive functions34. Recently, a transmembrane isoform of 
prostatic acid phosphatase, which avidly and selectively binds subsets 
of nociceptive neurons, was found to block acute and chronic pain by 
functioning as a ecto-5′-nucleotidase and dephosphorylating extra-
cellular AMP to adenosine, which then activates spinal Gαi-coupled 
A1-adenosine receptors43. As enzymes make good drug targets, and 
proteases and related enzymes have marked functional roles in spinal 
hyperalgesia, these molecules provide new hope for the development 
of therapeutic strategies.

In addition to Gαq/11 and Gαs, Gα12/13 might also contribute to 
chronic pain. For example, a single injection of lysophosphatidic acid 
(LPA) into the intrathecal space elicits profound mechanical allodynia 
for several days, accompanied by a rapid loss of myelin in peripheral 
nerves that is induced by activation of the LPA1 receptor-Gα12/13- 
Rho pathway44. However, whether the two phenotypes are linked, 
and whether and how demyelination could induce allodynia, needs 
to be clarified.

Common signatures for pain-sensitizing molecules 
A recurring theme with most mediators of pain is their effect on 
intracellular calcium, which leads to the activation of several  
calcium-dependent kinases, such as CamKIIα, cyclooxygenase-2  
(COX-2) and the NO synthase (NOS) family (Figs. 3b and 4). 
Prostaglandin E2 (PGE2) and NO, the products of COX-2 and  
neuronal NOS, respectively, have been proposed to function as 
retrograde messengers and to facilitate neurotransmitter release 
from primary afferent terminals in the spinal dorsal horn (Fig. 3b).  
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The mitogen-activated protein kinases extra-
cellular signal–regulated kinase-1 (ERK1) 
and ERK2 are also activated downstream of 
diverse ion channels, GPCRs and RTKs and 
have gained a prominent place in the field of 
nociceptive sensitization45. The Kv4.2 potas-
sium channel, which regulates the excitability 
of neurons, has been identified as a promi-
nent target of ERK1 and ERK2 (ref. 46).

Synapse-to-nucleus communication 
The ability of ERK1 and ERK2 to phospho-
rylate ion channels probably mediates only 
the acute component of ERK-induced hyperalgesia. However, ERK1 
and ERK2 can also induce long-lasting changes in pain sensitivity 
by migrating to the cell nucleus and acting on gene transcription. 
Moreover, cAMP and CamKIV are also synapse-to-nucleus com-
municators and thereby recruit a chronic ‘memory’ component 
for pathological pain25 (Fig. 3b). In the cell nucleus, cAMP and 
ERK trigger the activation of the cAMP response element (CREB), 
which drives the expression of a variety of pain-related proteins, 
such as COX-2, transient receptor potential vanilloid-1 (TRPV1) 
and calcium channels (Fig. 3b). Another transcriptional repressor, 
DREAM, acts constitutively to suppress prodynorphin expression  
in spinal cord neurons and thereby to elicit hyperalgesia47.

Inhibitory networks and pain processing
An important way in which the net output of the spinal dorsal horn 
can be modulated is by controlling the degree of tonic and phasic 
inhibition, which is determined by GABAergic and glycinergic neuro-
transmission and by endogenously released opioids, cannabinoids 
and adenosine (Fig. 3a). A balance between the activation of metabo-
tropic glutamate and GABA receptors can control the intrinsic firing 
properties of deep dorsal horn neurons and switch them between 
diverse activation modes, such as tonic, plateau or bursting patterns, 
by modulating inwardly rectifying potassium channels48. It has been 

proposed that a selective loss of GABAergic interneurons in the spinal 
dorsal horn after nerve injury causes an imbalance between excitation 
and inhibition49,50.

PGE2 causes protein kinase A–dependent phosphorylation and 
inhibition of glycine receptors that contain the α3 subunit and thereby 
relieves dorsal horn neurons from glycinergic inhibition51. Another 
intriguing mechanism for disinhibition of spinal neurons is related 
to a nerve injury–induced collapse of the chloride gradient, which is 
coupled with enhanced excitability in postsynaptic neurons52. Loss 
of the postsynaptic potassium chloride exporter KCC2 mediates this 
phenomenon and leads to a reduction in GABA-mediated inhibi-
tory postsynaptic currents52, a process that is aided by bone-derived 
neurotrophic factor (BDNF) released from microglia53 (Fig. 3b). 
Depletion of KCC2 has also been implicated in the pathogenesis of 
pain associated with spinal cord injury54, diabetic neuropathy55 and 
other forms of chronic pain. Modulating the activation of GABAA 
receptors with subunit-specific agonists may constitute a promising 
approach for inhibiting pathological pain without eliciting the numer-
ous typical side effects of GABAA-modifying drugs56.

Mechanisms of tactile allodynia
Because the peripheral Aβ fibers that conduct mechanical touch are 
distinct from nociceptors (C and Aδ fibers), mechanical allodynia is 
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granulocyte macrophage colony-stimulating 
factor; IP3R, inositol 1,4,5-triphosphate receptor; 
DAG, diacylglycerol; P2X3, ATP-gated ion channel; 
5-HT3, serotonin-gated ion channel; NK1: 
neurokinin receptor-1; PAR1-4, protease-activated 
receptors 1-4; ETA, endothelin receptor A; EP1, 
prostaglandin receptor-1; CCK, cholecystokinin; 
TrkA, neurotrophin receptor A; TrkB, neurotrophin 
receptor B; G-/GM-CSFR, G-CSF receptor and 
GM-CSF receptor pJAK, phosphorylated Janus-
activated kinase; pSTAT, phosphorylated signal 
transducer and activator of transcription; PI3-K, 
phosphoinositol 3-kinase; pAKT, phosphoprotein 
kinase B; sGC, soluble guanylyl cyclase; PIP2, 
phosphoinositol diphosphate.
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generally considered to be determined by central changes that are trig-
gered by increased activity of nociceptors. In some animal models of 
chronic pain, such as knee arthritis57, sensitization of C fibers might 
even contribute to the maintenance of mechanical allodynia and per-
sistent changes in C fiber activity are seen in many clinical settings of 
chronic pain. In contrast, it has also been suggested that nociceptors 
are not required for the induction of mechanical hypersensitivity: 
toxin-based ablation of Nav1.8-expressing nociceptors, which affects 
nearly all nociceptive neurons of the dorsal root ganglia, was reported 
to elicit deficits in responses to noxious mechanical pressure and cold 
stimuli, but not in nerve injury–induced mechanical allodynia58. This 
is mostly consistent with previous observations in animals in which 
capsaicin has been used to produce neonatal ablation of TRPV1-
expressing C fibers59. Although these results are compelling, they do 
not fully rule out the possibility that peripheral nociceptors contribute 
to neuropathic allodynia, because these approaches may not target 
all nociceptors and because inducing widespread death of nocicep-
tors during development could elicit adaptive plasticity and trigger 
compensatory mechanisms. Indeed, recent results suggest that a dis-
tinct class of C-type sensory neuron (unmyelinated, low-threshold C 
mechanoreceptors, which express the vesicular glutamate transporter 
VGLUT3) are involved in mediating mechanical hypersensitivity 
caused by injury60.

Despite these advances, it is unclear why low-threshold inputs 
are read or interpreted as painful or unpleasant after nerve injury. 
Collateral sprouting of low-threshold Aβ fibers on to ‘nociceptive’ 
 second-order neurons in the spinal dorsal horn has been observed after 
peripheral injury61, but this might not occur consistently or in a suf-
ficiently large magnitude62. Furthermore, the fact that disinhibition of 
spinal networks by acute blockade of spinal GABAergic or glycinergic 
transmission can induce immense tactile allodynia within minutes63 
suggests that there must be a hard-wired pathway already in place 
that is normally under strong inhibitory control. Electrophysiological 
 studies show that whereas only high-threshold monosynaptic inputs 
are found on pain- and temperature-sensitive spinal projection  
neurons under normal circumstances, blockade of local inhibition 
uncovers substantial Aβ, low-threshold fiber inputs, which are poly-
synaptic and require NMDA receptor activation to be functional64,65.

Nociceptive processing and hyperalgesia at supraspinal sites
Thalamic relay nuclei have a key role in gating, filtering and process-
ing sensory information en route to the cerebral cortex and are subject 
to similar activity-induced plasticity processes as the spinal cord46,66. 
However, the role of corticothalamic and thalamocortical loops in 
regulating sensory gating in the thalamus has not been widely studied 
in the context of pain. Two modes of firing of thalamocortical neu-
rons, tonic and burst firing, are believed to reflect the divergent states 
of sensory signal transmission from the thalamus to the cortex. The 
mGluR1/mGluR5-PLCβ pathway increases burst firing and decreases 
tonic firing in thalamocortical neurons by concurrently regulating  
T-type and L-type calcium currents67, and this process is associated 
with reduced visceral pain responses, suggesting that switching 
between the firing modes of thalamocortical neurons is a key mecha-
nism for gating of incoming sensory nociceptive inputs.

The ACC mediates key emotional-aversive aspects of pain68 
and may also have a mnemonic role in which it allows transient 
storage of information during pain processing. Peripheral nerve 
injury triggers long-term changes in excitatory synaptic trans-
mission in layer 2/3 neurons in the ACC, recruiting both pre-  
and postsynaptic mechanisms of potentiation9,69, which involve 

GluR-A–containing AMPARs, activation of ERK1 and ERK2 and 
the calcium-stimulated adenylyl cyclase-1 (refs. 68,69).

Another key limbic system structure that has been implicated  
in the affective component of pain is the central nucleus of the amy-
gdala (CeA; nociceptive amygdala). Interestingly, rats with arthritic 
pain show enhanced transmission at synapses in the CeA with affer-
ents that bring nociceptive inputs from the parabrachial nucleus as 
well as those that bring polymodal sensory inputs from the basolateral 
amygdala65. This enhanced transmission is mediated by G protein 
signaling through mGluR1 and mGluR5 and corticotrophin-releasing 
factor receptors70,71. Furthermore, at glutamatergic synapses between 
CeA neurons and nociceptive inputs from the pontine parabrachial 
nuclues, endogenously released noradrenaline acting at presynaptic 
α2 receptors decreases the number of active release sites for gluta-
mate with no change in release probability, suggesting that the CeA 
might be an important target region for the antinociceptive actions 
of noradrenaline72.

Descending modulation of spinal gating of pain
Descending inhibitory systems block spinal transmission, leading to 
hyposensibility or a lack of pain, in spite of inputs coming in from 
the periphery. Such inhibitory mechanisms have evolutionary value 
because they can enable the organism to ignore pain in critical situ-
ations, such as flight or fight, and serve as a mechanistic basis for 
placebo-induced analgesia73. Furthermore, descending modulatory 
systems may contribute to analgesia produced by a variety of non-
pharmacological pain control approaches, such as transcutaneous 
electrical nerve stimulation, acupuncture and hypnosis.

Converging lines of evidence from anatomical, electrophysiological 
and pharmacological studies show that the axis of the periaqueductal 
gray (PAG) and rostroventral medulla (RVM) can inhibit or facilitate 
sensory processing in the spinal dorsal horn74. Descending control 
can also arise from the lateral and caudal dorsal reticular nucleus and 
the ventrolateral medulla. Owing to their therapeutic role and their 
contribution to opioidergic control of pain and placebo analgesia, 
much attention was initially focused on descending adrenergic and 
serotonergic pathways, originating from neurons in the locus coeru-
leus and nucleus raphe magnus, respectively, which finally lead to the 
activation of local encephalenergic neurons in the spinal dorsal horn. 
The differential contributions of the noradrenergic and serotonergic 
components to opioid-induced analgesia have been a topic of much 
debate. Pharmacological manipulations that increase synaptic levels 
of serotonin and noradrenaline, such as the use of tricyclic antidepres-
sants and other classes of antidepressant, have gained prominence 
in the clinical management of chronic pain, particularly in therapy-
resistant states such as neuropathic pain and fibromyalgia74,75. The 
in vivo analgesic efficacy of selective serotonin reuptake inhibitors 
in clinical trials is lower than that of drugs that affect both serot-
onin and noradrenaline (for example, tricyclic antidepressants). It 
has been suggested that the analgesic effects of antidepressant drugs 
occur mainly through the modulation of noradrenaline in the spinal 
dorsal horn. However, mice lacking a LIM homeobox transcription 
factor called Lmx1b, which lack serotonergic neurons in the adult 
CNS, show markedly reduced analgesia in response to opioids and 
antidepressants, suggesting that central serotonergic neurons consti-
tute an important part of the descending pain modulatory circuitry 
that mediates analgesia induced by opioids and antidepressants76,77.

Recent years have brought substantial advances in the understanding 
of descending facilitation of pain by the PAG-RVM axis74. Site-specific 
microinjections of local anaesthetics and lesion studies have helped to 
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work out the circuitry that underlies this process and its functional 
role in mediating the facilitatory influences of supraspinal sites74,75. 
On a mechanistic level, it has been reported that both NMDA recep-
tor–NO signaling and cholecystokinin are involved in the control of 
RVM excitability. Neurons in the RVM that express both cholecystoki-
nin receptor 2 and the μ-opioid receptor, which are directly activated 
by cholecystokinin input to the RVM, are important for descending 
facilitation and their ablation markedly reduces the duration of neu-
ropathic pain78. Persistent afferent inputs that arise from peripheral 
injury or inflammation produce neuroplastic changes in the RVM, such 
as activation and proliferation of microglia and astrocytes, phospho-
rylation of the p38 MAP kinase, release of BDNF and upregulation of 
NMDAR subunits79,80. Interestingly, the ablation of lamina 1 projection 
neurons, which express neurokinin 1 receptors, leads to a decrease in 
activity-induced activation of serotonergic neurons in the brain stem 
and to loss of descending facilitation81. These and other observations 
have led to the notion that upon activation by primary afferent input, 
spinal projection neurons recruit PAG-RVM modulatory loops to trig-
ger descending facilitation of nociceptive transmission in the spinal 
dorsal horn and that this could be further amplified by feedback from 
the amygdala and the ACC in states of chronic pain.

Anatomical and pharmacological considerations suggest that 
although facilitatory and inhibitory pathways arising from the RVM 
are distinct, they are likely to be activated simultaneously in condi-
tions of acute nociception. However, in pathological pain states, neuro-
plastic changes such as those described above may yield sustained 
facilitation, tipping the balance in favor of amplifying pain. A key 
question is how this bidirectional control of spinal transmission can 
be achieved by the circuitry in the RVM. A widely accepted theory 
proposes that two distinct populations of neurons in the brainstem, 
‘on cells’ and ‘off cells’, are differentially recruited by higher brain 
structures in conditions of chronic pain, stress or fear to facilitate 
or inhibit pain at the spinal level82. It is intriguing to note that in 
conditions of tissue injury or persistent activation of nociceptors, a 
phenotypic switch is seen in RVM neurons such that the incidence 
of on and off cells in the population increases, coupled with a cor-
responding decrease in neutral cells74,75. For example, application of 
inflammatory mediators to the dura leads to an activation of on cells 
and a transient inhibition of off cells in the RVM, which is associated 
with facial allodynia in headache-related pain83.

The precise mechanism by which spinal synaptic transmission 
is facilitated by descending influences is a matter of much interest. 
Spinal depletion of serotonin reduces mechanically evoked responses 
of deep dorsal horn neurons in electrophysiological studies and 
pharmacological studies indicate that spinal 5-HT3 receptors make 
a key contribution to facilitation. Importantly, serotonin applied 
 spinally can transform silent glutamatergic synapses into func-
tional ones by insertion of AMPARs84. Mice that genetically lack 
 serotonergic neurons76 show enhanced inflammatory pain, which is 
attenuated by spinal delivery of serotonin, but also show decreased 
sensitivity to mechanical painful stimuli in basal (naive) conditions. 
One interpretation of these findings is that descending serotonergic 
pathways facilitate mechanical sensitivity in circumstances of acute 
pain, but that in inflammatory conditions the inhibitory influences 
of descending serotonergic neurons prevail76. However, this notion 
is not fully supported by a recent study, which reports that selective 
depletion of serotonin in RVM neurons by local RNA interference of 
tryptophan hydroxylase-2, the rate-limiting enzyme in the synthesis 
of neuronal serotonin, attenuates tissue or nerve injury-induced allo-
dynia and hyperalgesia85. These contrasting observations may stem 

from differences in the depletion of serotonin in terms of spatial 
(global versus RVM specific) and temporal (onset at prenatal versus 
adult stages) profiles. In summary, descending serotonergic influ-
ences not only serve as a key mechanism to regulate the gain of pain 
transmission in a complex and context-dependent manner, but also 
lay the basis for pharmacological development of drugs.

Structural plasticity in neural networks underlying pain
A tremendous level of modulation can be achieved by structural 
modifications of nociceptive pathways. Structural plasticity can 
occur at various anatomical and temporal scales (Fig. 1b). At the 
macroscopic anatomical level, long-term neuropathic pain in humans 
has widespread effects on brain anatomy related to the duration and 
magnitude of pain86. Local morphological alterations in the brain, 
mostly representing a decrease in the brain gray matter, have been 
reported in people with phantom pain, chronic back pain, irritable 
bowel syndrome, fibromyalgia and headaches, among others86,87. The 
important question is whether these changes are the cause or the con-
sequence of pain. Furthermore, specificity is an issue, as other distinct 
neural disorders, such as depression, are also accompanied by changes 
in brain volume. One interesting observation that supports a role for 
brain volume changes in chronic pain is that different pain syndromes 
appear to be associated with distinct patterns of alterations span-
ning the ACC, orbitofrontal cortex, insular cortex and dorsal pons. 
Furthermore, the decrease in gray matter associated with chronic 
pain is at least partially reversible when pain is successfully treated, 
suggesting that these structural changes are a reversible consequence 
of frequent nociceptive inputs88. Interestingly, these changes have 
been modeled successfully in rats, making it possible to carry out 
mechanistic studies into the functional relevance of the observations 
made in chronic pain patients89.

Another level of structural plasticity is that of activity-dependent 
changes in connectivity. Striking changes in the structure of nerves 
such as denervation, renervation, sprouting and hypertrophy have 
been reported in peripheral tissues, such as the skin, bone or visceral 
organs in pathological pain states in humans and experimental ani-
mals90–93 (Fig. 1b). The functional role of such morphological changes 
is not clear, especially as most of the morphological studies have been 
done on fixed tissue in biopsies, which precludes an unequivocal 
causal association with changes in pain perception90–92. For example, 
in animal models of cancer-induced pain, recurring cycles of denerva-
tion and renervation occur, which may lead to confounding results 
across studies depending upon which time point was examined93.  
It will be imperative in future studies to apply noninvasive in vivo 
imaging techniques to models of chronic pain to establish causal asso-
ciations between structural plasticity of nerves and pain levels over 
the temporal progression of the disease.

Perhaps the most exciting form of structural plasticity refers to 
activity-dependent changes in dendritic spines, which define the 
strength of excitatory synaptic transmission94 (Fig. 1b). Sensory 
inputs can profoundly alter both the stability and function of synap-
tic contacts by inducing activity-dependent changes in spines over a 
time scale ranging from seconds to hours or even days95. It has been 
proposed that in adult animals, most spines that are newly formed by 
sensory inputs are transient and changes in spine morphology and 
shape rather than spine number may reflect the dynamic state of the 
associated synapse. However, new evidence shows that a small fraction 
of new spines generated by a novel sensory experience are preserved 
and are associated with life-long memories96. Interestingly, several key 
mediators of spine stabilization and turnover, which have been studied 
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in brain circuits95, overlap with molecules that mediate spinal pain 
hypersensitivity, such as AMPARs, NMDARs, CamKIIα and ephrins 
as well as other RTKs (Fig. 2b). Neuropathic pain resulting from spinal  
cord injury is associated with both increased de novo formation and 
elaboration of dendritic spines in spinal laminae IV and V97.

From studies on the brain, it is known that changes in the shape and 
size of dendritic spines are determined by rapid remodelling of the 
underlying actin cytoskeleton98. Furthermore, most signaling path-
ways that link synaptic activity to spine morphology influence local 
actin dynamics97,98. For example, the Rho/Rac families of GTPases 
transduce signals coming from extracellular stimuli (such as ephrins 
or glutamate) to the actin cytoskeleton and contribute to plasticity in 
dendritic spines99. In this context, it is interesting to note that modula-
tion of spine morphology and density in the spinal dorsal horn induced 
by spinal cord injury is reversed by inhibiting Rac1, which also leads to 
amelioration of injury-induced hyperalgesia97 (Fig. 2b). Furthermore, 
Homer1a also reduces the density of spines in lamina IV and V neurons 
in the spinal dorsal horn23 (Fig. 2b). Finally, recent evidence connects 
gabapentin, a key pharmacological drug used in the therapy of epilepsy 
and neuropathic pain, to remodelling of synaptic contacts. Gabapentin 
is an inhibitor of α2δ-1, which was proposed to be a component of 
voltage-sensitive calcium channels; however, it was recently found that 
α2δ-1 constitutes a thrombospondin receptor and gabapentin inhibits 
excitatory synaptogenesis in the brain by antagonizing thrombospondin 
binding to α2δ-1, a mechanism that has been linked to the antiepileptic 
actions of gabapentin100. This raises the exciting possibility that a similar 
mechanism in spinal networks might produce an antihyperalgesic effect 
of gapapentin in neuropathic pain states.

Beyond molecular mechanisms—a need for improved translation
Although there are many targets that could be selected to take for-
ward to therapeutic and clinical development, several hindrances 
have to be overcome to enable bench-to-bedside translation. For 
one, redundancy between nociceptive mediators and mechanisms 
limits the clinical utility of single approaches. Second, most of the 
key intracellular mediators of nociceptive plasticity, such as MAP 
kinases, PKC, PLC and CREB, are not specific for the pain modulatory 
system and have global functions in physiology, thereby necessitat-
ing the development of site-specific delivery tools. One possibility to 
side-step central side effects is to target peripheral mechanisms early 
on and to use peripheral analgesia, as has been shown for opioids and 
cannabinoids. Finally, a focus on understanding and targeting the 
mechanisms that underlie spontaneous pain in pathological states 
is urgently required. Despite these challenges, the sheer breadth and 
depth of pain research and the rapid pace at which new insights have 
been attained over recent years provides a strong basis for the belief 
that excellent therapeutics are within reach.
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