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Viral infections are a constant threat to higher organisms, and early 
detection of viruses by the innate immune system is critical for 
host defense. Mammalian antiviral immunity is initiated by germ-
line-encoded pattern-recognition receptors that recognize specific 
pathogen-associated molecular patterns such as viral nucleic acids.  
After recognizing viral RNA or DNA, pattern-recognition receptors 
activate signaling pathways that trigger the production of type I inter-
ferons and inflammatory cytokines to orchestrate immune responses 
for virus elimination and thereby produce the clinical symptoms of a 
viral infection1. The viral nucleic acid–recognition receptors include 
the transmembrane Toll-like receptors (TLRs) TLR3, TLR7, TLR8 
and TLR9 (refs. 2–4), the HIN200 family member AIM2 (refs. 5–8) 
and the cytoplasmic RIG-I-like helicases (RLHs) RIG-I (encoded by 
Ddx58) and Mda5 (encoded by Ifih1)9,10.

RLHs are responsible for the detection of viral RNA in the 
cytosol1. They are composed of an RNA-binding helicase domain, 
a regulatory domain and two caspase-recruitment domains 
(CARDs) for signal propagation to the interferon-regulatory 
factor (IRF) and transcription factor NF-κB signaling path-
ways. Despite such similarities, the RLHs RIG-I and Mda5 
detect distinct RNA viruses. The viruses recognized by RIG-I  
include vesicular stomatitis virus (VSV) and influenza virus, whereas 

Mda5 controls responses to picornaviruses (encephalomyocarditis 
virus (EMCV) and poliovirus) and other viruses11. The selective  
ligand for RIG-I is a 5′ triphosphate on double-stranded RNA12–15.  
The natural ligand for Mda5 remains to be identified, but long 
stretches of polyinosinic-polycytidylic acid (poly(I:C)) can serve as 
an artificial agonist for this RLH16.

To engage downstream pathways after recognizing a virus, RLHs 
form homotypic CARD-CARD interactions with the adaptor protein 
MAVS17–19, which results in the recruitment and activation of further 
signaling molecules to mitochondria-associated complexes. The adap-
tors TRAF3, TANK and TRADD and the kinases TBK1 and IKKε are 
responsible for activation of the transcription factors IRF3 and IRF7 
and subsequent synthesis of type I interferon20. RLHs additionally 
activate the proinflammatory NF-κB pathway for the production of 
cytokines such as interleukin 1β (IL-1β) and IL-6 (ref. 1), but the 
mechanisms that relay RLH signaling to NF-κB are not well defined.

The production of IL-1β requires, in addition to NF-κB-dependent 
new synthesis of pro-IL-1β, a second signal that triggers caspase-1 
activation. Caspase-1 is responsible for the proteolytic processing of 
pro-IL-1β into mature, bioactive IL-1β. The activation of caspase-1 
in response to many distinct danger signals depends on cytoplas-
mic multiprotein complexes called inflammasomes, which assemble 
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Interleukin 1 (IL-1) is a potent proinflammatory factor during viral infection. Its production is tightly controlled by 
transcription of Il1b dependent on the transcription factor NF-κB and subsequent processing of pro-IL-1 by an inflammasome. 
However, the sensors and mechanisms that facilitate RNA virus–induced production of IL-1 are not well defined. Here we report 
a dual role for the RNA helicase RIG-I in RNA virus–induced proinflammatory responses. Whereas RIG-I-mediated activation of  
NF-B required the signaling adaptor MAVS and a complex of the adaptors CARD9 and Bcl-10, RIG-I also bound to the adaptor 
ASC to trigger caspase-1-dependent inflammasome activation by a mechanism independent of MAVS, CARD9 and the Nod-like 
receptor protein NLRP3. Our results identify the CARD9–Bcl-10 module as an essential component of the RIG-I-dependent 
proinflammatory response and establish RIG-I as a sensor able to activate the inflammasome in response to certain RNA viruses.
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from various sensors and associated adaptor proteins in a context-
dependent manner21. The best understood of these is the NLRP3  
(also called NALP3) inflammasome, which activates caspase-1 
indirectly via the inflammasome adaptor ASC (also called Pycard) in 
response to very diverse triggers, including crystals (such as uric acid, 
silica and asbestos), bacterial pore-forming toxins (such as nigericin), 
vaccine adjuvants, fungi, and certain DNA and RNA viruses21–25. 
However, the molecular interactions that engage the relatively non-
specific NLRP3 inflammasome in response to such distinct stimuli 
are unclear at present. Another type of inflammasome that has been 
linked to viral recognition is the AIM2 inflammasome5–8. AIM2 is a 
cytoplasmic DNA receptor that directly interacts with ASC to trigger 
caspase-1 activation and subsequent IL-1β secretion after infection 
with a DNA virus. Here we demonstrate that RIG-I serves as a dual 
sensor that can trigger both NF-κB-dependent production of pro- 
IL-1β and inflammasome activation in response to certain RNA 
viruses. In this context, RIG-I engages the CARD9–Bcl-10 module 
for NF-κB activation and triggers ASC for inflammasome activation 
in an NLRP3-independent manner.

RESULTS
RIG-I in IL-1 production after VSV infection
To investigate the functions of RIG-I in RNA virus–induced produc-
tion of IL-1β, we first infected human peripheral blood mononuclear 
cells (PBMCs) with VSV (Fig. 1). PBMCs exposed to VSV secreted 
mature IL-1β in a dose- and time-dependent manner (Fig. 1a,b). 
To selectively assess the role of RIG-I triggering in IL-1β production 
without considering the effects of viral RNA on other receptor sys-
tems, including TLRs, we transfected the cells with the selective RIG-I 
agonist 5′-triphosphate RNA (3pRNA). RIG-I ligation was sufficient 
to induce IL-1β production similar to that induced by transfected 

double-stranded DNA (poly(dA:dT)), which activates the AIM2 
inflammasome5–8 (Fig. 1b). Different 3pRNA species with distinct 
sequences resulted in similar IL-1β secretion (Supplementary Fig. 1), 
which indicated that the specific RNA sequence was not involved.

Next we pretreated PBMCs with the pan-caspase inhibitor z-VAD-fmk 
(Fig. 1c). Caspase inhibition abrogated IL-1β production after stimula-
tion with 3pRNA and poly(dA:dT) and resulted in much less secretion 
of IL-1β induced by VSV (Fig. 1c). Then we analyzed the autocatalytic 
formation of the active caspase-1 subunit p10 (Fig. 1d). Consistent with 
the production of the mature (p17) form of IL-1β, caspase-1 was proc-
essed after activation of the NLRP3 inflammasome induced by ATP after 
priming with lipopolysaccharide (LPS) or after stimulation of cells with 
3pRNA, poly(dA:dT) or VSV (Fig. 1d). In contrast, stimulation of cells 
with a synthetic double-stranded RNA (dsRNA) that lacks the 5′ triphos-
phate and triggers TLR7 but not RIG-I (ref. 26) did not induce IL-1β 
production or caspase-1 activation (Fig. 1d). Transfection of 3pRNA 
or poly(dA:dT) or infection with VSV also induced robust caspase-1 
activation and IL-1β production in mouse bone marrow–derived den-
dritic cells (BMDCs), but transfection of the synthetic dsRNA lacking the  
5′ triphosphate did not (Fig. 1e). As IL-1β production in response to these  
stimuli was defective in BMDCs from caspase-1-deficient mice (Fig. 1f), 
we conclude that caspase-1 activation is required for the 3pRNA- or  
VSV-induced proinflammatory responses. Together these results demon-
strate that RIG-I engagement activates caspase-1 for IL-1β production.

To investigate whether RIG-I signaling is required for IL-1β 
production, we used DCs from RIG-I-deficient mice16 (Fig. 2). 
Consistent with published data indicating that RIG-I ligation 
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Figure 1  RIG-I signaling is required and sufficient for IL-1β production 
after infection with an RNA virus. (a,b) Enzyme-linked immunosorbent 
assay (ELISA) of IL-1β in supernatants of human PBMCs (2 × 106) 
left unstimulated (∅) or stimulated for 6 h with VSV at a multiplicity 
of infection of 1 or 10 (wedge; a) or for various times (key) with VSV 
(multiplicity of infection, 5) or 2 µg/ml of 3pRNA or poly(dA:dT) (dAdT; b).  
(c) ELISA of IL-1β production by PBMCs stimulated for 6 h as described 
in b, with (zVAD) or without (−) the addition of 0.05 µM z-VAD-fmk 
(pan-caspase inhibitor) 1 h before stimulation. (d) Immunoblot analysis 
of mature IL-1β (p17) and processed caspase-1 (p10 subunit) in 
supernatants of PBMCs stimulated with 2 µg/ml of synthetic dsRNA 
that lacks the 5′ triphosphate (synRNA), 3pRNA or poly(dA:dT), or with 
VSV (multiplicity of infection, 5). ATP (far right), LPS-primed PBMCs 
stimulated with 5 mM ATP (positive control). (e) Immunoblot analysis  
of caspase-1 processing (p10 subunit) in supernatants of BMDCs  
(1 × 106 cells per ml) stimulated for 6 h as described in d. (f) ELISA of  
IL-1β secretion by wild-type (WT) and caspase-1-deficient (Caspase-1-KO)  
BMDCs treated for 6 h with various stimuli (horizontal axis). Data are 
representative of three (a–c) or two (f) independent experiments (mean 
and s.e.m.) or are from one experiment representative of three (d) or at 
least three (e) experiments.

Figure 2  RIG-I controls IL-1β production  
and caspase-1 activation after detecting  
RNA viruses. (a) ELISA of IFN-α, IL-6  
and IL-1β in supernatants of wild-type  
and RIG-I-deficient (RIG-I-KO) BMDCs  
treated for 6 h with various stimuli  
(horizontal axes). (b) Immunoblot analysis  
of caspase-1 processing (p10) and mature  
IL-1β (p17) in supernatants of the cells in 
a. (c) Immunoblot analysis of caspase-1 
processing (p10) in wild-type and  
RIG-I-deficient BMDCs cells treated for 
6 h with various stimuli (above lanes). ATP, LPS-primed BMDCs stimulated with 5 mM ATP (positive control). Data are representative of three 
independent experiments (mean and s.e.m.; a) or are from one experiment representative of three (b,c).
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activates the IRF and NF-κB transcription factors10, RIG-I- 
deficient DCs were defective in IRF-controlled production of 
interferon-α (IFN-α) as well as in NF-κB-regulated secretion of 
IL-6 after stimulation with 3pRNA or VSV (Fig. 2a). RIG-I was 
required for VSV- or 3pRNA-triggered activation of caspase-1 and 
production of mature IL-1β p17, although poly(dA:dT) stimula-
tion, exposure to EMCV or activation of NLRP3 with ATP and 
LPS induced normal activation of caspase-1 in RIG-I-deficient 
cells (Fig. 2b,c). Thus, RIG-I controls IRF- and NF-κB-dependent 
cytokine synthesis as well as inflammasome activation in response 
to certain RNA viruses.

RIG-I engages MAVS, CARD9 and Bcl-10
To understand the mechanisms that link RIG-I ligation to NF-κB-
dependent synthesis of pro-IL-1β and to the activation of caspase-1 
and inflammasomes, we investigated the role of the RIG-I effector 
MAVS in these pathways. Consistent with the essential role of MAVS 
in the activation of IRF and NF-κB18,19, MAVS-deficient cells did 
not synthesize IFN-α or IL-6 after treatment with the RIG-I agonist 
3pRNA (Fig. 3a). Moreover, MAVS-deficient cells did not secrete IL-1β 
after activation with RIG-I, although they produced normal amounts 
of IL-1β after stimulation with poly(dA:dT) (Fig. 3a). However, 
unlike RIG-I-deficient cells, MAVS-deficient BMDCs had normal 
activation of caspase-1 in response to stimulation with VSV or 3pRNA  
(Fig. 3b). These results indicate that although MAVS signaling is 
required for RIG-I-mediated production of IL-1β, MAVS engagement 
is not involved in RIG-I-mediated activation of caspase-1.

The E3 ubiquitin ligase TRIM25 catalyzes lysine 63–linked poly
ubiquitination of RIG-I to induce the recruitment of MAVS to RIG-I 
for the activation of effector pathways27. Consistent with the data 
reported above, TRIM25-deficient cells showed defects in IL-1β secre-
tion after VSV infection (Supplementary Fig. 2a). However, caspase-1  
was activated normally in VSV-infected or 3pRNA-stimulated 
TRIM25-deficient cells (Supplementary Fig. 2b).

Published work has identified the CARD coiled-coil protein CARD9 
as a multifunctional adaptor that relays inputs from various pathogens 
to proinflammatory cascades28. We considered that CARD9 might 
also have a role in RIG-I signaling. To assess that possibility, we treated 
CARD9-deficient BMDCs with 3pRNA, synthetic dsRNA lacking the 
5′ triphosphate, or poly(dA:dT). CARD9-deficient BMDCs showed 
much less of production IL-6 and IL-1β after stimulation with RIG-I, 
whereas the responses to poly(dA:dT) remained largely unchanged 
(Fig. 3c). Like MAVS, CARD9 was dispensable for caspase-1 activation 
(Fig. 3d). However, unlike MAVS, CARD9 was completely dispensable 

for IFN-α secretion (Fig. 3c). Thus, CARD9 selectively controls the 
RIG-I- and MAVS-induced proinflammatory response.

CARD9 is an upstream activator of the NF-κB pathway and of 
mitogen-activated protein kinases29–31. To define the role of CARD9 
in RIG-I and MAVS signaling, we measured the activation of NF-κB 
in BMDCs stimulated with 3pRNA. RIG-I triggered a robust NF-κB  
response in wild-type BMDCs but not in cells lacking MAVS or 
CARD9 (Fig. 4a), which indicated that the two proteins act together 
to facilitate NF-κB activation. RIG-I engagement by 3pRNA or VSV 
also activated the kinases Jnk and p38, although in BMDCs this 
activation was independent of CARD9 (Fig. 4b). To determine the 
consequences of those findings for IL-1β production, we studied  
RIG-I-induced synthesis of pro-IL-1β. Consistent with the requirement 
for NF-κB activation in pro-IL-1β induction, both MAVS-deficient 
and CARD9-deficient BMDCs showed a defect in 3pRNA-induced 
synthesis of pro-IL-1β, although they responded normally to poly 
(dA:dT) (Fig. 4c). Accordingly, inhibition of canonical NF-κB signal-
ing with a specific IKK kinase inhibitor, as well as CARD9 deletion, 
abrogated RIG-I-triggered upregulation of the secretion of pro-IL-1β 
mRNA and IL-1β protein after VSV infection (Supplementary Fig. 3).  
Thus, MAVS and CARD9 are essential for RIG-I-mediated activa-
tion of NF-κB and synthesis of pro-IL-1β. These findings explain 
why MAVS-deficient and CARD9-deficient cells fail to produce IL-1β 
although they regularly activate caspase-1 after RIG-I triggering.

CARD9-triggered activation of NF-κB depends on the CARD-
containing adaptor Bcl-10 (refs. 28,30), which in turn can recruit the 
paracaspase MALT1 and use MALT1-dependent or MALT1-independent 
mechanisms for cell activation32. We next stimulated Bcl-10-deficient 
and MALT1-deficient cells with 3pRNA. BMDCs that lacked Bcl-10, 
like CARD9-deficient cells, showed severe defects in RIG-I-induced 
production of pro-IL-1β and secretion of IL-1β and IL-6 but had nor-
mal interferon responses (Fig. 4d–f) and caspase-1 activation (data not 
shown). The response to poly(dA:dT) remained unaffected by the Bcl-10 
deletion (Fig. 4e,f). Notably, MALT1 was entirely dispensable for RIG-I- 
induced cytokine production (data not shown).

Together, the genetic experiments reported above demonstrated a 
signaling cascade downstream of RIG-I and MAVS that depended on 
CARD9 and Bcl-10 to control NF-κB-dependent cytokine production. 
To study the importance of this pathway in vivo, we infected wild-type 
and CARD9-deficient mice with VSV. Intravenous injection induced vig-
orous production of IFN-α, IL-6 and IL-1β in wild-type mice (Fig. 4g).  
Consistent with the in vitro results, the interferon responses were 
intact, but the concentrations of IL-6 and IL-1β were significantly 
lower in the serum of CARD9-deficient mice (Fig. 4g).
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Figure 3  MAVS and CARD9 are essential for RIG-I-induced production of IL-1β but are dispensable for inflammasome activation. (a,b) ELISA of  
IFN-α, IL-6 and IL-1β in supernatants of wild-type and MAVS-deficient (MAVS-KO) BMDCs treated for 6 h with various stimuli (horizontal axes).  
(b) Immunoblot analysis of caspase-1 processing (p10) in supernatants of the cells in a. (c) ELISA of IFN-α, IL-6 and IL-1β in supernatants of wild-type 
and CARD9-deficient (CARD9-KO) BMDCs treated as described in a. (d) Immunoblot analysis of caspase-1 processing (p10) in supernatants of the  
cells in c. Data are representative of three (a) or at least four (c) independent experiments (mean and s.e.m.) or are from one experiment representative 
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RIG-I and ASC form an NLRP3-independent inflammasome
As the role of the MAVS–CARD9–Bcl-10 axis in RIG-I-induced pro-
duction of IL-1β is restricted to the control of pro-IL-1β synthesis, it 
is still unclear how RIG-I activates caspase-1. Because the cytosolic 
bacterium Francisella tularensis induces a type I interferon response 
to indirectly activate caspase-1 (ref. 33), we considered possible indi-
rect effects of interferon in RIG-I-mediated inflammasome activa-
tion. However, Irf3–/–Irf7 –/– BMDCs34 which do not produce type I 
interferons, had normal production of IL-1β after stimulation with 
3pRNA or DNA (Fig. 5a).

Many classical triggers of inflammasomes require a stimulus-
induced potassium efflux for caspase-1 activation21. We therefore 
assessed RIG-I-induced production of IL-1β before and after pre
incubation with the potassium channel inhibitor glibenclamide. This 

treatment completely abrogated 3pRNA- or VSV-induced secretion of 
IL-1β, whereas IL-6 production was unaffected (Fig. 5b,c). We obtained 
similar results by adding excess extracellular potassium (130 mM)  
to the medium before RIG-I stimulation (data not shown).

Danger sensors of the NLRP family and the DNA sensor AIM2 acti-
vate caspase-1 by binding to ASC35. To determine whether RIG-I and 
ASC also form a caspase-1-activating signaling complex, we immuno
precipitated endogenous ASC from THP-1 human monocytic cells 
before and after infection with VSV and studied potential RIG-I inter-
actions by immunoblot analysis. RIG-I precipitated together with 
ASC in uninfected and VSV-infected cells, but Mda5 did not (Fig. 5d), 
which indicated that RIG-I and ASC can form a complex.

To investigate the function of RIG-I–ASC interactions by genetic 
means, we studied IL-1β production in BMDCs from ASC-deficient 
mice. In parallel, we analyzed wild-type and NLRP3-deficient DCs. 
Wild-type DCs showed robust caspase-1 activation and mature IL-1β 
production in response to triggering of RIG-I with 3pRNA or VSV, 
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(a) Activation of the p65 subunit of NF-κB in nuclear 
protein extracts of wild-type, CARD9-deficient and 
MAVS-deficient BMDCs stimulated for 60, 120 or 
240 min (horizontal axis) with 3pRNA, assessed 
by enhanced chemiluminescence and presented 
relative to activation in the unstimulated sample.  
(b) Immunoblot analysis of wild-type and  
CARD9-deficient BMDCs stimulated for various 
times (above lanes) with VSV (left) or 3pRNA (right), 
probed with antibodies specific for phosphorylated 
(p-) Jnk and p38. Bottom, immunoblot analysis 
of Erk and β-actin (loading control). (c) ELISA of 
intracellular pro-IL-1β in wild-type, CARD9-deficient 
and MAVS-deficient BMDCs stimulated for 6 h 
with 3pRNA or poly(dA:dT), assessed after cell 
lysis by repeated cycles of freezing and thawing. 
(d–f) ELISA of IFN-α (d), IL-6 and IL-1β (e),  
and intracellular pro-IL-1β (f) in supernatants of  
wild-type and Bcl-10-deficient (Bcl-10-KO) 
BMDCs treated with various stimuli (horizontal 
axes). (g) ELISA of IFN-α, IL-6 and IL-1β in serum 
collected from wild-type and CARD9-deficient  
mice 6 h after intravenous injection of 2 × 106  
plaque-forming units of VSV or PBS (control). 
Each symbol represents an individual mouse; small 
horizontal lines indicate the mean. *P < 0.05  
(two-tailed Student’s t-test). Data are representative 
of at least three (a,c) or three (d–f) independent 
experiments (mean and s.e.m.) or two experiments 
(g) or are from one experiment representative of at 
least four independent experiments (b).

Figure 5  RIG-I engages ASC to induce inflammasome activation.  
(a) ELISA of IFN-α and IL-1β in supernatants of wild-type BMDCs and 
BMDCs doubly deficient in IRF3 and IRF-7 (Irf3−/−Irf7−/−) treated for 
6 h with various stimuli (horizontal axes). (b,c) ELISA of IL-1β (b) and 
IL-6 (c) in supernatants of wild-type BMDCs treated for 6 h with various 
stimuli (horizontal axes) in the presence or absence (DMSO) of the 
potassium channel inhibitor glibenclamide. (d) Immunoassay of THP-1 
cells infected with VSV (+) or left uninfected (−); immunoprecipitation 
of proteins from lysates with ASC-specific antibody (IP: Asc beads) or 
control antibody (Control IP) was followed by immunoblot analysis (IB) of 
immunoprecipitates (right four lanes) or total lysates (far left two lanes). 
Data are representative of two (a) or three (b,c) independent experiments 
(mean and s.e.m.) or are from one experiment representative of at least 
four independent experiments (d).
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after stimulation of AIM2 with poly(dA:dT) DNA, and after activa-
tion of NLRP3 with ATP after LPS priming (Fig. 6a). As expected,  
NLRP3-deficient DCs failed to activate caspase-1 (Fig. 6a) or to 
produce IL-1β (Fig. 6b) in response to ATP but responded normally to 
poly(dA:dT), as well as to triggering of RIG-I with 3pRNA or VSV. In 
contrast, ASC-deficient cells showed defective activation of caspase-1 
and secretion of mature IL-1β after stimulation with ATP and LPS,  
poly(dA:dT), 3pRNA or VSV (Fig. 6). Thus, ASC is essential for coupling 
RIG-I-mediated recognition of RNA to NLRP3-independent caspase-1  
activation for IL-1β production. We have proposed a model for the 
RIG-I-triggered proinflammatory responses and inflammasome  
activation (Supplementary Fig. 4).

Picornavirus engages Mda5, CARD9 and NLRP3
Finally, we investigated whether Mda5 engages similar mechanisms to 
induce IL-1β production. For this, we first infected Mda5-deficient or 
CARD9-deficient cells with the Mda5-engaging picornavirus EMCV16. 
Wild-type cells produced IL-1β robustly after EMCV infection 
(Fig. 7a,b). However, neither Mda5-deficient nor CARD9-deficient  
cells showed an IL-1β response (Fig. 7b), which indicates that 
CARD9 is an effector of Mda5 signaling. Further experiments dem-
onstrated that CARD9 was required for EMCV-induced activation 
of NF-κB and was involved in pro-IL-1β synthesis (Fig. 7c,d). Next 
we assessed the role of Mda5 in inflammasome activation. In contrast 

to RIG-I activation in response to 3pRNA, transfection of poly(I:C) 
as an agonist for Mda5 (ref. 16) did not induce caspase-1 activation 
(Fig. 7e), which suggested that Mda5 activation by itself might not be 
sufficient for inflammasome activation. To study the requirement for 
Mda5 in inflammasome activation in response to the intact EMCV 
virus, we infected Mda5-deficient cells with EMCV (Fig. 7f). In par-
allel, we incubated the cells with the RIG-I-activating virus VSV and 
also infected NLRP3-deficient cells with the two viruses. Consistent 
with our results above (Fig. 6a,b), VSV strongly activated caspase-1  
and led to potent IL-1β secretion in NLRP3-deficient cells. VSV 
also induced inflammasome activation in Mda5-deficient BMDCs  
(Fig. 7f). In contrast, EMCV infection required NLRP3 and Mda5 for 
caspase-1 activation and IL-1β production (Fig. 7f–h).

DISCUSSION
Here we have reported the identification of two RLH effector 
mechanisms that act together in the production of proinflamma-
tory cytokines in response to recognition of RNA viruses. Although 
RLH-induced activation of NF-κB depended on the CARD9–Bcl-10 
complex, RIG-I also activated the inflammasome by forming a sig-
naling complex with ASC. Published work has demonstrated that 
RIG-I uses MAVS for activation of NF-κB and IRF17–19. We found that 
CARD9- and Bcl-10-deficient cells had profound defects in RIG-I-
induced production of IL-6 and pro-IL-1β but had normal interferon 
responses, which provided genetic evidence that CARD9 and Bcl-10 
act together downstream of MAVS to selectively control proinflam-
matory responses. Like RIG-I, Mda5 signals through MAVS1. We also 
observed a requirement for CARD9 in Mda5-induced production of 
proinflammatory cytokines. Thus, CARD9 represents a common and 
essential switch in RLH signaling that segregates the proinflammatory 
response from interferon production.
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CARD9 relays signals from various pattern-recognition receptors 
to proinflammatory pathways28,36. Together with its effector Bcl-10, 
CARD9 controls activation of the canonical NF-κB pathway after 
ligation of surface receptors containing or coupled to an immuno
receptor tyrosine-based activation motif, including dectin-1, FcγRIII, 
TREM-1 and Mincle37. This function of CARD9 is important for host 
defense against fungi and innate responses to certain bacteria, such 
as Mycobacterium tuberculosis30,38. Consistent with the function of 
CARD9–Bcl-10 complexes in NF-κB activation, we observed defective 
NF-κB signaling in CARD9-deficient and Bcl-10-deficient cells 
stimulated with agonists of RIG-I or Mda5. Those findings establish 
CARD9–Bcl-10 complexes as a missing link between RLHs and  
NF-κB. Previous work has shown that CARD9 can activate Jnk and 
p38, at least after macrophage infection with whole VSV particles39. 
However, we did not detect defects in Jnk or p38 signaling in CARD9-
deficient DCs stimulated with 3pRNA. The fact that VSV triggers several 
innate signaling systems, including TLRs40, and that CARD9 signaling 
to Jnk and p38 differs in DCs and macrophages29 could explain why we 
did not observe Jnk or p38 signaling defects in our experiments, which 
focused specifically on the RLH-induced pathway.

Bcl-10 is also required for T cell and B cell antigen receptor signal-
ing. In lymphocytes, Bcl-10 engages TRAF2 and TRAF6 to mediate 
lysine 63–linked polyubiquitinylation of IKKγ, which induces sub
sequent IKK activation32. It is therefore possible that a similar mecha-
nism operates downstream of RLHs. Caspase-8 and FADD are also 
involved in antigen receptor–induced NF-κB activation41, and a study 
has reported roles for caspase-8 and FADD downstream of MAVS42. 
Thus, several NF-κB activators seem to be shared by the RLH and 
antigen-receptor pathways.

Our work has additionally established RIG-I as a cytosolic RNA 
sensor for inflammasome activation. Selective RIG-I triggering was 
sufficient for caspase-1 activation and RIG-I was required for inflamma
some activation in response to stimulation with 3pRNA or infection 
with VSV. In contrast to NF-κB signaling and pro-IL-1β production, 
this process was entirely independent of MAVS, TRIM25 and CARD9; 
it was also independent of NLRP3. To our knowledge, this represents 
the first example of MAVS-independent RIG-I signal transduction. 
RIG-I-induced inflammasome activation shows similarities to the 
activation of AIM2 inflammasomes by viral double-stranded DNA, 
which is also NLRP3 independent35. After binding double-stranded 
DNA, AIM2 interacts with ASC to induce ASC oligomerization and 
subsequent IL-1β production. Likewise, RIG-I can form a protein 
complex containing ASC, potentially with additional components, 
to induce IL-1β production in response to some RNA viruses. Thus, 
RIG-I and ASC can constitute a distinct inflammasome.

Influenza virus activates the NLRP3 inflammasome22,24,25. 
Influenza enters the cell via the lysosomal pathway, and lysosomal 
damage, which is a common NLRP3 activator, could trigger NLRP3 
in this context. Consistent with that, lysosomal maturation is essential 
for influenza virus–induced NLRP3 activation22. We also observed 
a requirement for NLRP3 in IL-1β production after infection with 
EMCV. In contrast, VSV did not activate the NLRP3 inflammasome 
and instead relied on RIG-I and ASC. Our results and previously 
published data therefore indicate that inflammasome activation 
by RNA viruses can in principle use NLRP3-dependent or NLRP3-
independent mechanisms. The precise viral ligands that trigger the 
NLRP3 inflammasome and the cellular sensors that detect these lig-
ands remain to be identified. Although Mda5 was required for ECMV-
induced inflammasome activation, ligation of Mda5 with poly(I:C) 
was not sufficient to induce inflammasome activation. In this con-
text, the function of Mda5 might thus be restricted to priming of the 

NLRP3 inflammasome; that is, activation of Mda5 could potentially 
upregulate NLRP3, which is an essential step for activation of the 
NLRP3 inflammasome43,44.

Together our findings have indicated that RLHs can trigger at least 
three different cellular responses: interferon production, NF-κB acti-
vation and inflammasome activation. RIG-I could in principle sig-
nal from one large signaling complex that ‘fine tunes’ interferon and 
proinflammatory responses. Alternatively, RIG-I might be a sensor in 
several distinct signalosomes: one may contain RIG-I together with 
MAVS, TRAF3 and TBK-1 for IRF activation; a second may involve 
MAVS, CARD and Bcl-10 for the activation of NF-κB; and a third 
might contain RIG-I together with ASC and potentially other factors 
for caspase-1 activation. Precisely how RIG-I integrates these cel-
lular responses will be an important topic of future research, but our 
results offer one molecular explanation for the longstanding finding 
that RNA viruses are potent inducers of proinflammatory cytokines 
such as IL-1β and IL-6. In addition, as activation of the inflammatory 
responses forms a critical link to the induction of adaptive immunity, 
our results may have implications for the development of vaccines.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/natureimmunology/.

Note: Supplementary information is available on the Nature Immunology website.
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ONLINE METHODS
Mice. Mice genetically deficient in NLRP3, ASC, RIG-I, IRF3 and IRF7, 
CARD9, Bcl-10, MALT1, MAVS, Mda5, TRIM25 or caspase-1 have been 
described16,27,30,34,45–48. Mice were 6–12 weeks of age at the onset of  
experiments and were used according to local guidelines. Animal studies  
were approved by the local regulatory agency (Regierung von Oberbayern, 
Munich, Germany).

Media and reagents. RPMI-1640 medium (Invitrogen) and DMEM 
(Invitrogen) were supplemented with 10% (vol/vol) FCS (Hyclone), 
3 mM l-glutamine, 100 U/ml of penicillin and 100 µg/ml of strepto-
mycin (all from Sigma-Aldrich). ATP (A6419), poly(dA:dT) sodium 
salt (P9764), Glyburide (glibenclamide) and Bay11-7082 (specific IKK 
kinase inhibitor) were from Sigma-Aldrich. OptiMEM reduced-serum 
medium was from Invitrogen. Both poly(I:C) and ultrapure LPS (from 
Escherichia coli strain K12; used at a concentration of 50 ng/ml) were from 
Invivogen. The pan-caspase inhibitor z-VAD-fmk (benzyloxycarbonyl– 
Val-Ala-Asp–fluoromethylketone) was from Calbiochem. Chemically syn-
thesized RNA oligonucleotides were from MWG-Biotech. Double-stranded 
in vitro–transcribed 3pRNA was generated as described26. Synthetic dsRNA 
lacking the 5′ triphosphate (sense, 5′-GCAUGCGACCUCUGUUUGA-3′) and 
3pRNA1 (sense, 5′-GCAUGCGACCUCUGUUUGAC-3′) were used in most 
experiments; 3pRNA2 (sense, 5′-GCAUGCGAGGACUGUUUGAC-3′) was 
used to exclude sequence-specific effects on inflammasome activation.

Cells. Human PBMCs were isolated from whole human blood of healthy, vol-
untary donors by Ficoll-Hypaque density-gradient centrifugation (Biochrom). 
BMDCs were generated and grown as described23. Experiments involving 
human materials were in accordance with precepts established by the Helsinki 
Declaration and approved by the local ethics committee.

Cell culture and stimulation. All cells were stimulated in OptiMEM reduced-
serum medium (Invitrogen) at a density of 1 × 106 cells per ml. Where not 
indicated otherwise, cells were incubated for 6–8 h with 2 µg/ml of synthetic 
RNA, 3pRNA or poly(dA:dT). Cells were transfected with RNA and DNA with 
Lipofectamine 2000 according to the manufacturer’s protocol (Invitrogen). 
In some experiments, ultrapure LPS (50 ng/ml) and ATP (5 mM) were used 
as positive controls. For all conditions, cell-free supernatants were analyzed 
for cytokine secretion by ELISA or cells were lysed for immunoprecipitation  
and/or immunoblot analysis. Glibenclamide (25 µM) and z-VAD-fmk (0.05 µM)  
were used as described23.

Cytokine measurement. Cell supernatants and serum were analyzed 
for cytokine secretion by ELISA (BD, R&D Systems or PBL Biomedical 
Laboratories). For analysis of intracellular pro-IL-1β, cells were lysed by 
repeated cycles of freezing and thawing in RPMI medium containing 10% 
(vol/vol) FCS, 3 mM l-glutamine, 100 U/ml of penicillin and 100 µg/ml of 
streptomycin and were analyzed by ELISA.

Immunoblot analysis. Precipitated media supernatants or cell extracts 
were analyzed by standard immunoblot techniques49. Primary antibodies 
were polyclonal goat antibody to mouse-IL-1β (anti–mouse IL-1β; BAF401; 
R&D Systems), polyclonal rabbit anti–human IL-1β (D116; Cell Signaling), 
monoclonal mouse anti-RIG-I (Alme-1; Alexis), polyclonal rabbit anti-Mda5 
(AT113; Alexis), polyclonal rabbit anti-caspase-1 (sc-514 and sc-515; Santa 
Cruz), and polyclonal rabbit anti-Erk (9102), monoclonal rabbit antibody 

to phosphorylated p38 (12F8; 4631), polyclonal rabbit antibody to phosphor
ylated Jnk (9251) and polyclonal rabbit anti-β-actin (4967; all from Cell 
Signaling).

NF-B activation. Nuclear extracts were prepared according to standard meth-
ods, and 1 µg nuclear protein was analyzed with a NF-κB p65 Transcription 
Factor Assay kit (Pierce) as described50.

Coimmunoprecipitation. Endogenous RIG-I was immunoprecipitated from 
5 × 106 THP-1 cells seeded in 10-cm dishes with or without 3 h of VSV stimu-
lation (multiplicity of infection, 10). Cells were lysed in ice-cold lysis buffer 
(150 mM NaCl, 50 mM Tris pH 7.0, 1 mM EDTA, 1% (vol/vol) Nonidet P-40, 
10% (vol/vol) glycerol, 1 mM Na3VO4, 1 mM phenylmethyl sulfonyl fluoride 
and a Protease Inhibitor Cocktail tablet (Roche)) and lysates were incubated 
overnight at 4 °C with 80 µl protein G Sepharose beads (GE Healthcare) and  
2 µg antibody (polyclonal anti-ASC (AL177; Alexis Biochemicals) or poly-
clonal rabbit anti–Syrian hamster immunoglobulin G (307-005-003; Jackson 
ImmunoResearch)). Immunoprecipitates were analyzed by immunoblot.

RNA extraction and quantification. Total RNA was extracted from cells with a 
High Pure RNA Isolation kit as described by the manufacturer (Roche) and was 
analyzed by quantitative RT-PCR. RNA (1 µg) was reverse-transcribed with 
SuperScript II Reverse Transcriptase and oligo(dT) oligonucleotide accord-
ing to the manufacturer’s protocol (Invitrogen). The Universal ProbeLibrary 
and LightCycler 480 system (Roche) were used for quantitative PCR (primer 
sequences, Supplementary Table 1). Gene expression was calculated as a ratio 
of the expression of the gene of interest to that of Hprt1 (encoding hypoxan-
thine guanine phosphoribosyl transferase) measured for the same sample.

Preparation of virus stock and plaque assay. Baby hamster kidney (BHK-21) 
cells were infected with VSV Indiana (Mudd-Summers strain) or EMCV (a gift 
from A. Krug) and cell culture supernatants were collected 20 h after infection. 
Virus yield in culture supernatants was determined by standard plaque assay. 
VSV and EMCV were used at a multiplicity of infection of 5–10.

In vivo viral infection. For viral infection, mice were given intravenous injec-
tion of 2 × 106 plaque-forming units VSV per mouse in 200 µl medium or an 
equal amount of PBS (as a control). Serum was collected after 6 h. Cytokine 
concentrations were measured by ELISA.

Statistical analyses. The statistical significance of differences was determined 
by the paired two-tailed Student’s t-test. Differences with a P value of less than 
0.05 were considered statistically significant.
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