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Direct observation of correlations between individual
photon emission events of a microcavity laser
J. Wiersig1{, C. Gies1, F. Jahnke1, M. Aßmann2, T. Berstermann2, M. Bayer2, C. Kistner3, S. Reitzenstein3,
C. Schneider3, S. Höfling3, A. Forchel3, C. Kruse1, J. Kalden1 & D. Hommel1

Lasers are recognized for coherent light emission, the onset of
which is reflected in a change in the photon statistics1. For many
years, attempts have been made to directly measure correlations in
the individual photon emission events of semiconductor lasers2,3.
Previously, the temporal decay of these correlations below or at
the lasing threshold was considerably faster than could be mea-
sured with the time resolution provided by the Hanbury Brown/
Twiss measurement set-up4 used. Here we demonstrate a measure-
ment technique using a streak camera that overcomes this limita-
tion and provides a record of the arrival times of individual
photons. This allows us to investigate the dynamical evolution
of correlations between the individual photon emission events.
We apply our studies to micropillar lasers5 with semiconductor
quantum dots2,3,6–8 as the active material, operating in the regime
of cavity quantum electrodynamics9. For laser resonators with a
low cavity quality factor, Q, a smooth transition from photon
bunching to uncorrelated emission with increasing pumping is
observed; for high-Q resonators, we see a non-monotonic depend-
ence around the threshold where quantum light emission can
occur. We identify regimes of dynamical anti-bunching of photons
in agreement with the predictions of a microscopic theory that
includes semiconductor-specific effects.

Conventional lasers (like gas lasers or semiconductor edge emit-
ters) have a well-defined laser threshold that manifests itself in a
sharp increase in the number of emitted photons. Also, the classical
and quantum mechanical properties of the emitted light undergo
pronounced changes at the laser threshold. The coherence time of
the radiation increases strongly and the photon statistics reflects a
transition from thermal radiation to coherent emission. The origin of
the laser threshold is the loss of the majority of spontaneously emitted
photons into non-lasing modes.

Cavity quantum electrodynamics (QED) has opened the door to a
new class of lasers that are based on the altered spontaneous-emission
properties of the active material, these alterations being due to the
modified electromagnetic environment9. The Purcell effect makes it
possible to inhibit the spontaneous emission into non-lasing modes
and enhance that into lasing modes. As a result, in current state-of-
the-art semiconductor microcavity lasers2,3,5–8, the kink in the output
intensity as a function of pump rate—previously taken to be a clear
indication of a laser threshold—is strongly diminished or even lost.

There are fundamental reasons10 why the laser threshold is no
longer well defined when cavity QED effects become important
and the spontaneous emission into non-lasing modes is strongly
suppressed. In this regime, the number of photons in the cavity
and the number of electronic excitations in the active material
are no longer much larger than one, and quantum fluctuations
have a central role. Recent advances in the technical realization of

semiconductor microcavity lasers have exposed an urgent need for
new tools with which to characterize these devices, which operate in a
regime that differs fundamentally from that of conventional lasers.
This refers both to experimental techniques for characterizing
photon correlations and their dynamical evolution on the relevant
timescales in semiconductor systems and to quantum statistical
models that include semiconductor-specific effects.

The statistical properties of a light beam can be characterized using
the second-order, or intensity, autocorrelation function. A classical
version of this correlation function was first used by Hanbury Brown
and Twiss4. Shortly after, Glauber1 introduced a quantum mech-
anical description of the second-order correlation function

G(2)(t , t)~hb{(t)b{(tzt)b(tzt)b(t)i ð1Þ
which is often used in its normalized form

g (2)(t , t)~
G(2)(t , t)

hb{(t)b(t)ihb{(tzt)b(tzt)i ð2Þ

Here b{ and b are respectively photon creation and annihilation
operators of the optical mode of interest, and angle brackets denote
the quantum mechanical expectation value with respect to the den-
sity operator, r.

Under stationary conditions (no t dependence in equations (1)
and (2)), the second-order correlation function at zero delay,
t 5 0, directly reflects the statistical properties of the emitted light.
For conventional lasers with small b factor (describing the fraction of
the spontaneous emission into the laser mode relative to the total
spontaneous emission), a sharp transition from thermal, g(2)(0) 5 2,
to coherent light emission, g(2)(0) 5 1, is expected when passing the
threshold to lasing. For thermal light, it is also known that g(2)(t), as a
function of the delay time, decays to unity on the timescale of the
coherence time11. A drawback of previous investigations of photon
correlations in the laser emission was the finite time resolution of the
experiments. In a standard Hanbury Brown/Twiss measurement
with avalanche photodiodes, the time resolution is about 500 ps,
whereas the coherence time of semiconductor lasers below threshold
is less than 10 ps (ref. 3). In this example, the experiment averages
over a time interval, in which much of the decay of g(2)(t) from two to
one has taken place. This leads to an underestimation of g(2)(0) and
explains the observed below-threshold reduction of the correlation
function in previous experiments2,3.

We consider single-photon sources an important, albeit different,
topic because photon anti-bunching is demonstrated in the spontan-
eous-emission regime of single-atom12 or single-quantum-dot13

systems (although the improved time resolution of our new
measurement scheme will be beneficial when the Purcell effect is
used to shorten the spontaneous lifetime). Earlier experiments on
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intensity fluctuations in conventional semiconductor lasers14

addressed noise in continuous-variable measurements and led to
the seminal observation of squeezing as a true quantum effect.
Corresponding theoretical investigations based on a Langevin theory
were presented, for example, in ref. 15. In this Letter, however, we
demonstrate correlations between single-photon events.

For this purpose, we introduce a new measurement scheme that
reveals the arrival times of the individual photons in a light beam,
thereby allowing us to reconstruct the second-order (and even
higher-order) photon correlation functions. The capabilities of this
method are demonstrated in the characterization of quantum-dot-
based high-Q microcavity lasers. These systems can exhibit a strongly
reduced kink in the input and output power traces, as well as the
absence of a sharp transition in g(2)(0) between the values reflecting
thermal and Poissonian photon statistics, making the threshold no
longer well defined. In addition to measurements of g(2)(t 5 0) with-
out the limitations discussed above, we study the t dependence
of photon correlations and find an unexpected dynamical anti-
bunching effect. To verify our results and to address the underlying
physics, we use a microscopic theory for photon correlations in the
emission of quantum-dot-based microcavity lasers. In the past,
the use of single or few quantum-dot emitters for manipulating
the photon emission statistics has been suggested, for example in
refs 16, 17.

We obtain our experimental results by time-resolved single-
photon counting with a resolution down to 2 ps for g(2)(t) measure-
ments without the above-discussed limitations. After non-resonant
pulsed excitation of the sample, which is held at 6 K, the subsequent
emission is recorded with a streak camera in photon counting mode.
A fast silicon charge-coupled-device camera is used to read out the
streak camera screen. The temporal resolution is achieved by apply-
ing high voltage gradients to the horizontal and vertical camera
capacitors, causing time-dependent deflections of the photoelectrons

inside the streak camera. The camera is synchronized with the excit-
ing laser, such that the sweep period is equal to the laser repetition
rate.

Examples of streak camera pictures are shown in Fig. 1. Each dot in
Fig. 1b (enlarged for better visibility) corresponds to a single photon
detection. For the determination of the second-order correlation
function, within each streak the number of photon pairs, the first
detected at time t and the second delayed by a time t, is counted.
Normalization is obtained using the product of the average intens-
ities at times t and t 1 t according to equation (2). The resulting
normalized correlation function, g(2)(t, t), is then averaged over a
large number of streaks. Finally, g(2)(t) is obtained by averaging over
all emission times t. The pictures in Fig. 1 were recorded for a low-Q
cavity using III-V semiconductor material.

Extracted results for the second-order photon correlation func-
tion, g(2)(t 5 0), are provided in Fig. 2, together with the correspond-
ing input–output curves, for three different micropillars with cavity
qualities Q that increase from Fig. 2a to Fig. 2c. A few characteristic
features can be observed. Comparing the input–output curves, the
jump from spontaneous to stimulated emission is quite small—
about one order of magnitude for the II-VI cavity and two orders
of magnitude for the III-V cavities. Furthermore, for the low-Q III-V
cavity the jump is rather sharp, whereas for the other two cavities it is
smoother. This indicates that the studied samples are strongly influ-
enced by cavity QED effects. From the sample parameters, it may be
expected that the low-Q III-V cavity shows the behaviour closest to a
conventional laser, as exemplified by the relatively sharp jump in the
input–output curve. This jump is already softened for the II-VI cav-
ity, but the variation with cavity parameters suggests that the input–
output curve does not provide a unique characterization of the light
emission.

Much more insight can be obtained from the zero-delay second-
order correlation function. For the II-VI cavity, it shows a transition
from values slightly below two (characteristic for thermal light) to
those approaching one (suggesting Poisson statistics) in the onset
region of stimulated emission. For low excitation, g(2)(t 5 0) satu-
rates at a value of 1.95, which is less than two as expected for a
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Figure 1 | Time-resolved photon counting statistics. a, b, Statistics
integrated over 60,000 screens (a) and for a single screen of the streak camera
(b), revealing temporal correlations between individual photons. The
vertical axes show the temporal resolution after each excitation pulse. Along
the horizontal axes the emission after subsequent excitation pulses is
displaced. a visualizes the statistically averaged emission dynamics after
pulsed excitation. For the determination of photon correlations, the signal is
read out after only one screen has been filled with a set of streaks, as shown in
b for 14 excitation pulses. Regions associated with different excitation pulses
are separated by lines.
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Figure 2 | Measured second-order photon correlation function at zero
delay time (top) and output intensity versus input pump power, Pexc

(bottom), for three different microcavity lasers. a, The II-VI cavity, which
has a diameter of 1.5 mm, has a low Q factor, of 1,850, for the lowest confined
photon mode. Twenty quantum dots were estimated, from the quantum-dot
density and the spectral overlap of their emission with the optical mode, to
be involved. b, c, For the III-V cavities of diameters 5 mm (b) and 8 mm (c), Q
factors of 9,000 and 19,000 and effective quantum-dot numbers of 30 and 15
were estimated, respectively.
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conventional (low-b) laser. As the power is increased, a smooth drop
towards unity is seen as the lasing threshold region is passed. The low-
Q III-V cavity shows a similar dependence. For the high-Q III-V
cavity, however, g(2)(t 5 0) unexpectedly drops to values below unity
around the lasing threshold, giving clear evidence for the emission of
non-classical light. This is accompanied by an even smoother input–
output curve. For the III-V cavities, the correlations could not be
measured well below the threshold region owing to the limited sens-
itivity of the streak camera for wavelengths above 900 nm.

Our experimental set-up also provides access to the second-order
correlation function at finite delay times. This allows us to study the
dynamical evolution of the photon correlations in semiconductor
microlasers. In Fig. 3, we display the evolution of the correlations
for the III-V cavities and three different excitation powers. For the
low-Q cavity (Fig. 3a) and excitation below the threshold region,
g(2)(t) drops smoothly from a value slightly below two towards unity
within the first picoseconds. However, for delays of around 40 ps,
values below unity appear. The data for the II-VI cavity are similar to
those for the low-Q cavity. For the high-Q cavity (Fig. 3b) and excita-
tion in the threshold region, pronounced long-lasting oscillations of
g(2)(t) are visible. To ensure that this effect is not caused by noise or
lack of statistics, we studied the power dependence of the amplitude
and frequency of the oscillations and found systematic variations
(not shown). The oscillations become obviously damped with
increasing excitation power. Above threshold, we find that
g(2)(t) < 1 in both the low-Q case and the high-Q case.

For g(2)(0), a semiconductor theory has been developed recently18

using the cluster expansion technique19–21. In contrast to models based
on atomic systems, this theory is capable of incorporating semi-
conductor-specific features such as Pauli blocking, Coulomb inter-
action and a modified source term for spontaneous emission22–24.
The starting point of the microscopic theory is a semiconductor
Hamiltonian for the interacting carrier–photon system. The time
evolution of the photon number in the laser mode, Æb{bæ, and the
electron, f e

v ~hc{v cvi, and hole, f h
v ~1{hu{vuvi, populations is deter-

mined by using Heisenberg’s equations of motion. Here c{v and cv and
u{v and uv are the creation and annihilation operators of electrons in the
conduction and, respectively, valence band states v. Cavity losses are
introduced by coupling the system to an external reservoir. Scattering
and dephasing are treated in the relaxation-time approximation.

Here we extend the theory to finite delay times, t. Suppressing the
dependence on t, we rewrite equation (1) as

G 2ð Þ(t)~hhb{(t)b(t)iihb{bi
where the expectation value ÆÆ� � �ææ is taken with respect to the modi-

fied density operator ~rr~brb{=hb{bi. This way, we reduce the

two-time problem to two single-time problems that can be solved
successively. Our approach, which is applied to the nonlinear equa-
tions of motion describing semiconductor systems, becomes the
quantum regression theorem25 for linear systems of equations, as
frequently used for two-level systems.

In Fig. 4, we show examples of the numerical calculations. They are
intended to demonstrate possible results for two different sets of
parameters. The data are sensitive to the microscopic description
of the carrier scattering that provides a common source for carrier
redistribution and dephasing. These processes depend on, among
other things, the electronic states—both for the recombination pro-
cesses and for where the carriers are pumped. To simplify this rather
involved analysis, we assume pumping at higher quantum-dot states;
for a more direct comparison with the experiments, excitation of
delocalized barrier states and subsequent capture and relaxation pro-
cesses should be considered. We attribute deviations (such as the
stronger damping of the oscillations in Fig. 4d) to the simplifications
in the quantum-dot model. Nevertheless, the chosen examples repro-
duce the general trends of the experiments.

The value of g(2)(0) calculated for the low-Q case does not reach the
subthreshold value of two for thermal light, in agreement with
experiment. This has been identified before as a characteristic of
microcavity lasers with larger b factors and a small numbers of emit-
ters3. The corresponding calculations of g(2)(t) for low excitation
intensities show a non-monotonic decay to unity from the initial
value, g(2)(0). In the higher-Q case, we find an anti-bunching effect
(g(2)(0) , 1 and oscillations in g(2)(t)), as seen in the experimental
data.

The observed oscillations in the photon correlations are a result of
the dynamical coupling between photons and carriers and can be
qualitatively understood as follows. For a microcavity operated at
steady state in the spontaneous-emission regime, g(2)(t) decays from
(nearly) two to one on the timescale of the coherence time. In the
regime of dominating stimulated emission, g(2)(t) equals one inde-
pendently of time delay. The oscillations are observed in the regime of
transition from spontaneous to stimulated emission in a system that,
under these conditions, contains only very few photons emitted by
very few quantum dots. This is the transition regime of cavity QED
lasers discussed in ref. 10. Unlike in the situation in the lasing regime,
here the loss of a photon from of the cavity represents a severe
perturbation of the system, which strongly influences the coupled
carrier–photon dynamics.

Systems of emitters coupled to a cavity mode are known to exhibit
different kinds of oscillations of the emission intensity. Relaxation
oscillations can occur close to the threshold region when the laser is
switched on or perturbed, and Rabi oscillations can occur in the
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Figure 3 | Measured temporal evolution of the second-order correlation
function for selected pump powers, Pexc. Results for the III-V cavities of
Fig. 2: a, low-Q micropillar; b, high-Q micropillar. An unexpected outcome
is the appearance of dynamical anti-bunching (g(2)(t) , 1) for low and
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takes on smaller values with subsequent oscillations; this is particularly clear
for the high-Q cavity with P 5 112mW.
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regime in which the dissipation is small in comparison with the light–
matter coupling strength. The dynamics of the correlation function
g(2)(t) can be traced back to this behaviour. Our theory predicts that
both kinds of oscillations can be triggered by photon emission events.
In reaction to the perturbation, the system tries to re-establish equi-
librium, and, in doing so, undergoes quantum oscillations. In both
cases, the origin of these oscillations is the feedback due to the cavity,
which can lead to out-of-phase oscillations of photon number and

lasing medium. These oscillations become damped as the pump rate
increases and a regime of stimulated emission is reached in which the
photon number is high enough that single photon losses no longer
affect the system considerably.

In our case, the perturbation of the few-emitter system can become
so prominent that, for example, the subsequent emission of a photon
is suppressed. This leads to the dynamic anti-bunching both for zero
delay and for times after enhanced photon pair emission during the
oscillations.

These oscillations potentially also appear in intensity measure-
ments. However, as the moment of photon emission is stochastic,
any time averaging blurs the oscillations. Nevertheless, the oscilla-
tions also carry over to the correlation functions similar to g(2)(t).
There they survive the averaging, as although the moment of arrival
of the first photon is still stochastic, a second photon is picked whose
delay, t, relative to the first is fixed for all detected photon pairs. For
increasing Q, the cavity feedback is enhanced, causing the quantum
fluctuations to become more pronounced as reflected by the oscilla-
tions of g(2)(t).

In conclusion, we have presented a new measurement scheme with
the necessary time resolution to fully access photon correlations on a
single-photon level, yielding a record of arrival times of individual
photons. From these data, correlation functions can be constructed
to arbitrary order, facilitating a complete characterization of the light
source. Our approach can be viewed as the most direct experimental
realization of the pioneering theory in ref. 1. To give an example of
these possibilities, we show results for the third-order correlation
function in Fig. 5. Higher-order correlations in the light emission
may provide a detailed understanding of the nature of quantum
many-particle states such as those currently discussed for microcav-
ities in the regime of strong light–matter coupling.

The validity of the reported results is not restricted to semi-
conductor micropillars: similar results are expected for all light
sources that involve a small number of emitters, be they atoms,
molecules, defects in solids or semiconductor quantum structures.
We expect our findings and methods to mark the starting point for
novel quantum optical studies addressing the dynamics of correla-
tion functions of light.
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Characterization of the simultaneous arrival of three photons as a function
of excitation power, for the three different micropillar samples studied in
this paper. For the II-VI and low-Q resonators, the time resolution was
increased to about 20 ps. These two samples show values close to the
theoretical prediction, g(3)(0) 5 6, at lowest excitation powers. The kth-order
correlation functions for a thermal source of radiation are readily obtained
from the factorial moments of the Planck distribution,
Æn(n 2 1)� � �(n 2 k 1 1)æ 5 k!Ænæk, to give g(k)(0) 5 k!, corresponding to the
number of permutations of indistinguishable photons.
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METHODS SUMMARY
Experimental set-up. For the intensity correlation measurements, we used a

microscope objective to focus and collect the light. An interference filter with

a bandwidth of 1 nm singled out the fundamental-mode emission of the micro-

cavity. The normalized correlation function, g(2)(t, t), was determined by divid-

ing the number of photon pairs detected using the streak camera at times t and

t 1 t by the product of the mean photon counting rates at the same times.

Weighted averaging over all times t gave g(2)(t). To exclude noise or saturation

effects, correlation measurements were also performed on a pulsed laser with

several levels of attenuation, showing no deviations from the expected value,

g(2)(0) 5 1.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.

Received 12 January; accepted 28 April 2009.

1. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130,
2529–2539 (1963).

2. Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev.
Lett. 96, 127404 (2006).

3. Ulrich, S. M. et al. Photon statistics of semiconductor microcavity lasers. Phys. Rev.
Lett. 98, 043906 (2007).

4. Hanbury Brown, R. & Twiss, R. Q. Correlation between photons in two coherent
beams of light. Nature 177, 27–29 (1956).

5. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).
6. Choi, J.-S. et al. Evolution of the onset of coherence in a family of photonic crystal

nanolasers. Appl. Phys. Lett. 91, 031108 (2007).
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METHODS
Sample preparation. The cylindrical low-Q and high-Q III-V micropillar sam-

ples were grown by molecular beam epitaxy on a GaAs substrate. The distributed

Bragg reflectors consisted of 20 upper and 23 lower alternating layers of AlAs

(79 nm)–GaAs (67 nm) l/4 pairs for the low-Q micropillar and 26 upper and 33

lower alternating layers of AlAs (74 nm)–GaAs (68 nm) l/4 pairs for the high-Q

micropillar. The central l cavity contained one layer of self-assembled InGaAs

quantum dots with a density of ,3 3 1010 cm22 in the low-Q case and one layer

of self-assembled AlGaInAs quantum dots with a density of ,6 3 109 cm22 in

the high-Q case, from which cavities with diameters of several micrometres were
fabricated by means of high-resolution electron beam lithography and plasma-

induced reactive ion etching.

The II-VI sample was also grown by molecular beam epitaxy. There the dis-

tributed Bragg reflectors consisted of 15 upper and 18 bottom layers in which

ZnS0.06Se0.94 (48 nm) layers were used as high-index material and a 25.5-period

MgS (1.7 nm)–ZnCdSe (0.6 nm) superlattice was used as low-index material.

The central l cavity contained a single sheet of CdSe/ZnSe quantum dots with an

approximate density of ,5 3 1010 cm22.

To estimate the number of quantum dots involved in the light emission, we

multiplied the dot density of the as-grown sample by the effective photon mode

area in the pillar plane. Then we scaled this number by the spectral overlap

between the inhomogeneous dot emission and the width of the mode in the

lasing regime. Below threshold, the spectral width of the mode is larger, but

simultaneously fewer quantum dots are excited by the laser. Therefore, for sim-

plicity we used the same number of quantum dots over the whole excitation

power range.

Experimental set-up. The sample was mounted in a helium-flow microscopy

cryostat, in which temperatures as low as 6 K could be achieved. A Ti:sapphire
laser operating at l 5 780 nm with pulse durations of ,100 fs and a repetition

frequency of 76 MHz was used for excitation, corresponding to 13.2-ns pulse

separation. A microscope objective with a focal length of 2 cm and a numerical

aperture of 0.26 was used to focus and collect the light. After collection, the

emission was directed into the streak camera. An interference filter with a band-

width of 1 nm was used to single out the fundamental-mode emission of the

microcavity. To ensure that the measured correlations did not arise as a result of

noise in the charge-coupled device or saturation effects, we performed additional

correlation measurements on an attenuated pulsed laser. We varied the pulsed

laser intensity over the whole range of intensities used in this paper, but no

deviations from the expected result (g(2)(0) 5 1) were found.

Obtaining g(2) from experimental data. The normalized correlation function,

g(2)(t, t), is the number of photon pairs detected at times t and t 1 t divided by

the number of photon pairs that would be detected if the photons had the same

temporal intensity profile but were emitted statistically independently of each

other. The number of detected photon pairs is thus directly available in the

recorded single screens of the streak camera. This number is equivalent to the

non-normalized correlation function, G(2)(t, t), which is usually measured using
a Hanbury Brown/Twiss set-up. In the case of statistically independent photons,

the information about the number of expected photon pairs is completely deter-

mined by the mean intensities at times t and t 1 t. Therefore, the normalization

of g(2)(t, t 1 t) can be calculated from the intensity profile integrated over all

screens. Summing all photon pairs at various times, t, and for a fixed delay, t, and

dividing this number by the sum of the expected statistically independent

photon pairs for variable t values and fixed t, gives the time-averaged function

g(2)(t). In the excitation density regime of the transition from spontaneous to

stimulated emission, and above, the photon pairs at late t (when the emission is

purely spontaneous) have a negligible influence on the photon statistics.

Quantum-dot parameters. In the numerical calculations, we assumed that 50

quantum dots in the low-Q micropillar and eight quantum dots in the high-Q

micropillar were resonant with the optical mode. We chose a spontaneous-

emission factor of b 5 0.1, a total spontaneous-emission time (enhanced as a

result of the Purcell effect) of tsp 5 1.7 ps (low Q) or 0.75 ps (high Q), and a

quality factor of Q 5 40,000 (low) or 80,000 (high). We note that the experi-

mental Q factors are lower bounds, as they are determined for weak excitation

below the transparency point. Considering resonant pumping of carriers in the

quantum-dot p shell, we used a relaxation time from p shell to s shell of 0.5 ps for

electrons and 0.25 ps for holes. Further details of the quantum-dot model are

given in ref. 23.

Details of calculations. Coupled equations of motion for various expectation

values and correlation functions can be obtained18 using Heisenberg’s equations

of motion for the carrier and photon operators. To truncate the arising hierarchy

of equations, the cluster expansion method19,20 was used. In this approach,

operator averages are classified into singlets, doublets, triplets, quadruplets,

etc., according to the number of particles they involve. Mixed expectation values

with carrier and photon operators are classified accordingly, keeping in mind

that a photon operator is linked to two carrier operators21. Truncation on the

doublet level has been used to describe photoluminescence from quantum

dots23. To compute the photon statistics in terms of g(2)(0), truncation at the

quadruplet level is required18.

First we computed hb{(t)b(t)i, hb{(t)b{(t)b(t)b(t)i, hb{(t)b(t)c{(t)c(t)i, …

with t R ‘ according to the single-time equations of motion on quadruplet level

as discussed in ref. 18. In a second step, the t dynamics of

G 2ð Þ(t)~hhb{(t)b(t)iihb{bi

was evaluated using the single-time equations of motion for hhb{(t)b(t)ii,
hhc{v (t)cv(t)ii, … with the initial conditions

hhb{(t)b(t)ii t~0j ~hb{b{bbi=hb{bi

hhc{v (t)cv(t)ii t~0j ~hb{bc{v cvi=hb{bi

and so on. The underlying assumption is that the truncation introduced by the

cluster expansion works equally well for operator averages taken with respect to

the density operators r and ~rr.
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