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Abstract. Providing quality mobile video applications in hand-held mobile devices requires increased compu-
tational capability. Using Single Instruction Multiple Data (SIMD) techniques to expose and accelerate the data
parallelism inherent in video processing increases performance in handheld and wireless systems. The paper intro-
duces a new 64-bit SIMD coprocessor of the Intel©R XScale©R microarchitecture which is optimized for low-power
handheld applications. The architecture blends the SIMD media processing style with the capabilities of the XScale
microarchitecture. This paper provides an overview of the architecture, its instruction set, programming model, the
pipeline organization and functional units. The paper also describes how key features of architecture improve the
performance of video applications as compared to a scalar implementation. The performance and power improve-
ments based upon measured results are analyzed to show how the opportunities of power savings by reducing the
frequency and voltage can be realized.
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1. Introduction

With the convergence of communication and compu-
tation capabilities in wireless devices, the growth of
many applications, such as video capture, video con-
ferencing, video display are enabled. The demand for
increased video image resolution and higher quality
output challenges the performance of current wireless
platforms. These platforms are composed of a proces-
sor, a memory sub-system and many other peripherals
integrated as a system on a chip (SoC). As battery life
is a premium in handheld applications, it is essential
that enhancements to the basic architectures are power
efficient.

Optimizing instruction set architecture is a logi-
cal approach towards attaining power efficient ac-
celeration of multi-media applications. This paper
introduces Intel©R Wireless MMXTM technology, a
new 64-bit Single Instruction Multiple Data (SIMD)
style multi-media coprocessor. An overview of the
architecture is presented with details of the micro-

architecture provided. The performance characteristics
of the SIMD architecture are evaluated with analy-
sis of measured results of a MPEG-4 video decoding
application.

2. Technology Overview

Single instruction multiple data processing (SIMD)[1]
is a common form of parallel processing used exten-
sively today in desktop and mobile computing plat-
forms [2–5].

Using special SIMD instructions it is possible to op-
erate on multiple data elements packed into a single
register, where each data element is treated as an in-
dependent item. For example, in a packed addition op-
eration four additions are calculated in parallel using
SIMD techniques rather than the single addition per-
formed in a scalar processor. Other styles of SIMD pro-
cessing techniques have been proposed, some of which
are 32-bit architectures [6].
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Identifying the opportunity for parallel processing
of data elements is key for the successful application
of SIMD techniques. Fortunately many multi-media
applications do contain data parallelism suitable for
SIMD acceleration. For example, in image processing
the same operation may be repeated on many pixels in
the image. While SIMD processing is not a new tech-
nique, applying the technique to handheld and wire-
less platforms does offer new opportunities to increase
power efficiency of multimedia applications. Wireless
MMX technology brings the SIMD style of media
processing into the handheld platform. In particular
it integrates equivalent functionality to all of Intel©R,
MMXTM technology [7] and the integer functions from
SSE [3] with the XScale micro-architecture [8]. The
base functionality of both MMX and SSE are aug-
mented with features to ensure the seamless integra-
tion with the load/store architecture [9] of the XScale
microarchitecture.

Like MMX technology and SSE, Wireless MMX
technology utilizes 64-bit wide SIMD instructions,
which allows it to concurrently process up to eight data
elements in a single cycle. This style of programming
is well known to existing software developers. There
are three supported packed data types (8-bit byte, 16-
bit half word and 32-bit word) and the 64-bit dou-
ble word. The elements in these packed data types
may be represented as signed or unsigned fixed point
integers.

SIMD operations improve the clock cycle utilization
by performing multiple operations in a single instruc-
tion. Increased performance can also be translated to
increased power efficiency. The rest of the paper shows
how the SIMD extensions improve performance and
power for mobile video applications.

3. Architecture

The Intel©R XScale©R microarchitecture [8, 10] is a high
speed, power efficient implementation of the ARM
V5TE Architec-ture [11–13]. The implementation of
the microarchitecture employs a 7-stage pipeline cou-
pled with a 32 KByte instruction cache and a 32 KByte
data cache.

The ARM architecture supports extension of the
baseline processor functionality by use of a pre-defined
framework for adding up to 16 coprocessors. This
framework includes definition of instruction encoding
space that can be used to extend the instruction set and
basic classifications of instruction types. The ARM co-

processor model supports three classes of coprocessor
instruction:

• Load/Store—transfers data to or from the coproces-
sor to main memory

• Register transfer—transfers the contents of registers
between the coprocessor and the main core

• Coprocessor Data Processing—operate on data from
the coprocessor registers and retain the result in a
coprocessor register.

Wireless MMXTM technology uses the coprocessor
framework to extend the base functionality of the
XScale microarchitecture. For the end user, wireless
MMX technology appears as a seamless extension of
the XScale microarchitecture instruction set and pro-
gramming model.

As specified by the ARM architecture, the XScale
core is responsible for fetching instructions and data
from memory and delivering them to the coprocessor.
Instructions are fetched and dispatched by the XScale
core, with wireless MMX instructions being routed
to the coprocessor for execution. The XScale core is
also responsible for all communications with the data
caches. The address calculations for memory transac-
tions are calculated from values stored in the XScale
core register file. Wireless MMX technology takes ad-
vantage of the existing memory subsystem of the XS-
cale microarchitecture without the need for extra dedi-
cated memories, and the power consumption associated
with them. The power efficiency is further improved by
using advanced power management, where the Wire-
less MMX unit is only activated, when required, on an
instruction by instruction basis.

The coprocessor is tightly coupled to the XScale mi-
croarchitecture so there is a single thread of control.
This simplifies the task of code development compared
to other multi-core solutions.

3.1. Micro Architecture

The Wireless MMX unit comprises five key functional
units to implement the programmers model. Figure 1
shows the organization of the functional units within
the coprocessor.

The Shift and Permute Unit is responsible for perform-
ing shift and permute operations. These operations
include alignment, logical and arithmetic shift, rota-
tion, packing and shuffling.
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Figure 1. Wireless MMX micro-architecture.

The Execute Unit is responsible for performing arith-
metic and logic operations and it also provides a sat-
uration capability. Operands may be received from
the SPU when saturation is required and the CIU
when the transfer instructions are issued.

The Multiply and Accumulate Unit is responsible for
performing all multiply and accumulate operations.
Operands are also received from the EXU when ex-
ecuting the sum of absolute difference instruction.
The MAU unit is a three stage pipeline with internal
accumulator forwarding.

The Coprocessor Interface Unit transfers data between
the Wireless MMXTM unit registers and the Intel©R

XScale©R microarchitecture. In addition to support-
ing coprocessor data transfer, it is also responsible
for storing and loading data to and from the memory.

The Main Register File (RF) is organized as sixteen
64-bit registers, located in the coprocessor 0 space
(CP0). The large register file allows the Wireless
MMX instructions to support an increased number of
intermediate values in complex calculations. For ex-
ample, multiple output samples of a filter may be cal-

culated in parallel. The increased storage allows the
programmer to take advantage of the spatial and tem-
poral data locality as found in many multi-media ap-
plications. This reduces the required load/store band-
width and improves processing efficiency. Align-
ment support instructions also increase the effective-
ness of this data re-use. These combined techniques
are referred to as Multi-Sample Technology.

The control and status registers are mapped into co-
processor 1 space (CP1). There are four 32-bit general-
purpose control registers used for alignment and shift
control. As the shift and alignment offset is usually in-
variant across the inner loops the registers are designed
to hold constant values. This saves the use of a packed
data register.

There are also a number of control and status regis-
ters mapped onto coprocessor 1 space:

wCASF-SIMD Arithmetic Status Flags— A set of
four flags for each element of a byte/half-
word/word/double-word operation

• N when the result is negative
• C when there is a carry out

Z if the result is zero
• V if the result over-flowed

wCSSF-SIMD Saturation Flags which set the respec-
tive flag if an operation on a particular element sat-
urates

wCON-coprocessor Control Register— support for re-
ducing memory traffic on a context switch.

3.1.1. Integrating SIMD and Conditional Execution.
A key feature of the XScale micro-architecture is the
ability to define a predicate that can be used to de-
termine whether a particular instruction is executed as
a function of the current state of the processor arith-
metic flags. This conditional execution mechanism in-
creases programming efficiency by removing explicit
compares and branch instructions. To seamlessly inte-
grate the SIMD coprocessor into the ARM architecture,
wireless MMX instructions can also be conditionally
executed. It is also possible for the coprocessor to gen-
erate arithmetic flags that can be used later in condi-
tional execution. For a particular SIMD operation, a
set of arithmetic flags is generated for each data el-
ement processed. For example, if four half-word ele-
ments are processed then four sets of flags are generated
and stored in the wCASF. Each set of flags consists of
the N, Z, C and V indicators.
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From the WCASF, the SIMD flags can be combined
and transferred to the XScale core current program sta-
tus register (CPSR) where they can be subsequently
used for conditional execution. Combining the SIMD
flags and transferring them to the CPSR allows new
predicates for conditional execution to be supported. If
the SIMD flags are combined with an “OR” operation
then an “if any” predicate can be created. For example
for the condition “if any SIMD field is zero execute the
following instruction”, this would set the Z flag in the
CPSR if any Z flag is set in the WCASF. Any subse-
quent instruction that used conditional execution based
upon zero being set would effectively be using the “if
any” predicate. Similarly if the SIMD flags are com-
bined with an “AND” operation the “if all” predicate
can be created (e.g. “if all fields are zero then execute
the next instruction”). This mechanism for combining
the SIMD flags and using them in conditional execution
is known as group conditional execution.

3.2. Pipeline Structure

To achieve the same clock speed as the XScale core, the
Wireless MMX unit employs the same super-pipelined
structure, as shown below in Fig. 2. Here in the first
two stages of the pipeline (F1, F2) the instructions are
fetched from the instruction cache. In the next stage
(ID) the instruction is decoded and the operation is
determined. At this point if a wireless MMX instruction
is identified it is transferred to the coprocessor during
the ID stage. After decode the operands are read from

Figure 2. Pipeline organisation.

the register file in the RF stage. Once the operands are
available the main execution of the operation happens
in XI and X2 with the final result writeback in XWB.

As well as the main execution pipeline the Wire-
less MMX unit contains two other side pipelines, one
for memory operations routed via the XScale core (Dl,
D2 and DWB) and another side pipeline for multiply
operations. (Ml, M2, M3 and MWB). The addition of
these two side pipelines allows longer duration opera-
tions (e.g. memory access) to complete in one pipeline
while new instructions can continue to be processed in
the other pipelines.

The XScale microarchitecture with Wireless MMX
technology is a single issue machine. The Wireless
MMX and main core pipelines operates in lock step,
providing a single thread of control with no complex
synchronizations required between the two units. An
instruction can be issued to any resource in the main
core pipeline or coprocessor pipeline that is not busy.

The architecture allows instructions to be retired
out of order. This is possible because the instruc-
tions are committed in the X1 stage so anything past
this is guaranteed to complete. The pipeline orga-
nization also supports multiple out-standing loads,
which improves memory throughput. This feature com-
bined with the out-of-order completion, allows non-
dependent instructions to execute, reducing the impact
of memory latency in system on a chip applications.

3.3. Instruction Set Overview

Wireless MMX technology provides a rich set of in-
structions that perform parallel operations on multi-
ple data elements packed into 64-bit registers. In ad-
dition, backwards compatibility is provided with ex-
isting XScale microarchitecture coprocessor 0 instruc-
tions, which operate on XScale core registers (TMIA,
TMIAxy, TMIAPH).

In total there are 43 new instructions in the architec-
ture. Table 1 provides an overview of the instruction
set.

These instructions have been designed to provide
equivalent functionality to MMX technology and inte-
ger SSE to accelerate the porting of applications from
the desktop and mobile PC platforms to handheld and
wireless systems.

The architecture provides enhancements above and
beyond the baseline MMX technology. In particular the
three operand instruction format of Wireless MMXTM

technology allows a destination register to be specified
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Table 1. Key instruction overview of wireless MMX technology.

Instruction Description

WACC Addition of all 8 × bytes, 4 × half words, or 2 × words in 1 reg

WADD/WSUB Add/Subtract 8 × bytes, 4 × half words, or 2 × words

WALIGN Extracts 64-bit value on byte boundaries from 2 × 64 bit.

WAND/WOR/ WXOR 64-bit logical operations

WAVG2 Unsigned average on vectors of 8- or 16-bit data

WCMPEQ WCMPGT Compare 8 × bytes, 4 × half words, or 2 × word elements in parallel. Result is mask of 1 ’s if true or 0’s
if false

WMAC Multiply four signed or unsigned 16-bit half words in parallel and accumulate with a 64-bit register.

WMAX/WMIN Vector maximum/minimum selection

WMADD Multiply four 16-bit words in parallel and add

WMUL Multiply four signed 16-bit words in parallel. Low- or high-order 16 bits of 32-bit result are produced

WROR/WSRA/WSLL/WSRL Rotate right, shift arithmetic/logical right, left shift of 4 half words, 2 words, or 64-bit double word, in
parallel

WPACK Pack double word to words or words to bytes

WSAD Sum of absolute differences on 8 × Byte or 4 × 1 6-bit data.

WSHUFH Shuffles 16-bit data specified by an 8-bit immediate

WUNPCK Unpack 8 × bytes, 4 × 1 6-bit half words, or 2 × 32-bit words

WLDR/WSTR Load/Store Byte, half word, word or double word

TANDC TORC Logical operations across the fields of the SIMD PSR (wCASF) and sends the result to the XScale core
CPSR

TBCST Broadcasts a value from the XScale core source register to every element in the packed destination
register

TMIA 32 × 32 signed multiply-accumulate using operands from the two source XScale core registers

TMIAxy 16 × 16-bit multiply-accumulate selecting high/ low 16-bits from two source XScale core registers

TMIAPH Dual 16 ×16 multiply accumulate into 64-bit using signed 16-bit operands from the two source XScale
core registers

that is different from both source registers. This elim-
inates the need to copy the source operands to avoid
over-writes that are common in the original MMX ar-
chitecture. Code density can be improved by removal
of the now redundant MOVQ instruction used to save
copies of the source operands.

The three operand instruction format also allows ac-
cumulating functions that were not previously possible.
Wireless MMX technology provides a single instruc-
tion multiply accumulate operation (WMAC) which is
useful for signal processing operations. It also provides
an accumulating version of sum of absolute differences
(WSAD) which is used for video encode operations.

4. Architectural Support for Video

The video encoder/decoder is one of the more demand-
ing application domains targeting both desktop and mo-

bile platforms. The video coding standards MPEG-1,
MPEG-2, MPEG-4 [14, 15], ITU-T H.261, H.263 [16]
and the upcoming H.264 [17] all employ a transform
based hybrid motion compensated encoding scheme.
In these standards, both spatial as well as temporal re-
dundancy in a sequence of images is exploited to re-
duce the amount of data which is to be transmitted or
stored. The algorithms used to implement the compres-
sion have been evolving from one standard to the next,
and in general maintain a high degree of similarity.
The more computational intense algorithms also dis-
play a high degree of parallelism. This parallelism is
particularly well suited to the SIMD instruction support
introduced with Wireless MMX technology.

The flexibility provided by a software implementa-
tion of the critical components of the codecs allows
both adaptation to a specific standard as well as ad-
dressing the enhancements introduced in the future.
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Figure 3. MPEG-4 simple profile video encoder.

4.1. Data Parallelism

To successfully employ SIMD optimization techniques
it is important to identify the data parallelism oppor-
tunities in an application. There are many such oppor-
tunities to use SIMD techniques in both video encode
and decode.

Figure 3 shows a typical video encoder, in this case
MPEG-4. The units shaded indicate the algorithm sub
functions where data parallelism can be accelerated by
Wireless MMX technology.

Spatial compression removes redundant data within
any given image. It is applied to all image data during
video compression by applying the 8 × 8 2D Discrete
Cosine Transform, DCT, followed by quantization and
Huffman encoding. Temporal compression removes re-
dundant data within a sequence of images. It is accom-
plished by taking advantage of the fact that there is a
great deal of similarity between sequential frames of
motion video. Objects moving across the field of view
do not change very much between frames, they often
only move to different positions. This similarity be-
tween frames is used to reduce the amount of transmit-
ted data required by the digital motion video standards
and also places the highest burden on the video encoder.

There are basically two types of image coding, intra
and predictive. The into coded pictures do not employ
temporal compression techniques and are encoded as
still images without referring to other frames. In con-
trast, the predictive coded picture relies on reference
pictures which are acquired at a different point in time.
The reference picture may be a single picture which
occurred at an earlier point in time, or it may be two
pictures which occurred at both an earlier and later
point in time. These are referred to as P-pictures and
B-pictures respectively.

During the temporal encoding process, component
blocks of sequential video frames are compared at dis-
placed positions which represent candidate motion vec-
tors in the horizontal and vertical directions. The task
of calculating displacement values, motion estimation,
involves finding the best match between corresponding
areas within two sequential video frames. This motion
estimation is a key area where Wireless MMXTM tech-
nology can offer acceleration.

The video decoder performs the opposite to the video
encoder; it decodes a compressed video stream and dis-
plays it. Figure 4 shows a typical MPEG-4 video de-
coder and the data parallelism opportunities that Wire-
less MMX can accelerate.

The compressed video stream is provided as in-
put to the decoder. The inverse operations indicated
by the intra or predictive coding modes are then
performed. If the image has been into coded, the

Figure 4. MPEG-4 simple profile video decoder.
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decompression involves Huffman decoding followed
by inverse quantization and inverse 8 × 8 DCT. If
the image has been predictive coded, the decoding op-
erations will also include motion compensation. Mo-
tion compensation and inverse DCT are two areas that
exhibit the data parallelism that is suitable for SIMD
acceleration.

For video conferencing applications, a mobile device
will capture image data from a CCD or CMOS sensor
and compress this for transmission to the remote party
while simultaneously decoding the compressed stream
sent from the other end of the video link. The image
data from both video streams must also be displayed on
the local display resources. This implies some manip-
ulation of the image data since the output and input to
video codecs is in YCbCr color space and the display
is normally provided in RGB color space. The color
space conversion is a significant part of the decode-to-
display pipeline. The percentage of time spent in each
part of a typical decode-display pipeline is shown in
Fig. 5. The exact profile obtained is a function of im-
age content, bit-rate, resolution and compression stan-
dard. However, this shows that the same areas that were
identified earlier as containing data parallelism also
account for a significant proportion of the execution
time of the decoder. Any improvements to these rou-
tines therefore have a big impact on overall decoder
performance.

Motion compensation, IDCT and color conversion
account for the majority of the cycles consumed during
the video decode and display. Wireless MMX technol-
ogy provides significant improvement by processing
multiple data items at once as described in the follow-
ing sections.

Figure 5. Typical MPEG-4 decode profile of the coastguard se-
quence at GIF resolution.

4.2. Programming Model

The programmers model is an extension of the
XScale microarchitecture programming model and, as
such, Wireless MMX instructions can be interleaved
with XScale microarchitecture instructions. The man-
agement of data pointers and loop control are imple-
mented using the XScale registers with all arithmetic
processing being performed by the coprocessor.

The Wireless MMX unit and the XScale processor
also share the same cache and memory hierarchy so
there is no complex interaction required to exchange
data between the two. This allows Wireless MMX tech-
nology to be targeted easily at the critical routines
and data to be shared without concern of synchroniza-
tion or data coherency issues. The Wireless MMX unit
and the XScale core share a single thread of computa-
tion which makes code development and debug sim-
ple. With packed data types each SIMD instruction
can process multiple data elements. This reduces the
required instruction cache bandwidth to process the
same amount of data and this subsequently improves
the power efficiency by reducing the number of instruc-
tion cache accesses.

4.3. Instruction Support

Wireless MMX technology contains a number of fea-
tures that improve the efficiency of video applications.
The general SIMD operations such as addition, subtrac-
tion, and multiplication, provide the basic components
for algorithm development. In addition to these sev-
eral special instructions are introduced which acceler-
ate particular aspects of video encoding and decoding.

The motion estimation and motion compensation
are both algorithms which naturally operate on byte
boundaries. In order to expose the parallelism of
the algorithms for SIMD implementations, it be-
comes necessary to align the data prior to presenta-
tion to the execution resources. The WALIGNI and
WALIGNR instructions provide a mechanism for re-
ducing the overhead associated with the alignment. The
WALIGNI instruction is useful when the alignment is
known beforehand, and the WALIGNR instruction is
useful when the exact alignment is calculated when the
algorithm executes. Both of these instructions operate
on register pairs. Figure 6 shows the operation of the
WALIGN instruction.

Motion compensation is a prime candidate for SIMD
acceleration. When the motion vector indicates a
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Figure 6. The alignment instruction.

non-integer displacement, the spatial interpolation of
the pixels may be indicated in one of three fashions,
horizontal, vertical, and diagonal, (1/2X, 1/2Y, and
1/2XY). The two way average (WAVG2) instruction
is provided to accelerate this function. The instruc-
tion allows the average of up to 8 pixels pairs to be
calculated independently in parallel. Figure 7 shows
the byte version of this instruction where 8 pixels can
be processed. The instruction also provides the ca-
pability for optional biased rounding which is use-
ful for the different rounding specifications of each
standard.

For horizontal interpolation, WALIGN and WAVG2
can be used together effectively. The WALIGN instruc-
tion is first used to extract a 64-bit value from two
source operands at any byte boundary. It is then used
again to obtain a one pixel shifted version of the aligned
row.

Aligned Row : ×7 ×6 ×5 ×4 ×3 ×2 ×1 ×0

Aligned + 1 Row : ×8 ×7 ×6 ×5 ×4 ×3 ×2 ×1

Figure 7. The byte average instruction.

Figure 8. Wireless MMX assembly code for an 8 × 8 block 1/2X
interpolation.

The data aligned in this fashion can be presented to
the WAVG2B instruction. However, if the three LSBs
of the pointer indicate a 64-bit boundary, then one of the
alignments will not be necessary and a slightly more
efficient code sequence can be developed. Similarly
if the LSB’s indicate byte 7 within a 64-bit word, an
alignment can also be eliminated. The assembly code
for performing the general case of 1/2X interpolation
is provided in Fig. 8. The interpolation is performed on
a 8 × 8 block which may be aligned on a byte bound-
ary in memory. The throughput is 19 cycles per loop
iteration resulting in a total of 92 cycles including the
overhead for setup and loop management. Since the
sequence is fairly straightforward, unrolling the loop
completely is a reasonable approach to eliminate 15
additional cycles providing ∼16% additional perfor-
mance improvement.

Compared to the sealer implementation, the 1/2X in-
terpolation for an 8 × 8 block using Wireless MMXTM

executes approximately 3 times faster. Although the
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WAVG2B instruction is applied only 8 times com-
pared to 64 scaler instructions to process the block,
a speedup of 8× is not achieved. This is due to the
fact that for the SIMD approach the arithmetic repre-
sents only a portion of the total cycles. Additional op-
erations are necessary to manage the alignment when
preparing the operands for presentation to the parallel
execution resources. These operations include isolat-
ing the three LSB’s of the pointer to the block, trans-
ferring them to the alignment control resisters using
the TMCR instruction, and performing the alignment
using the WALIGNR instruction.

For video encoding, motion estimation and motion
search algorithms can consume as much as 40% of the
encode operation [18]. The objective of motion estima-
tion is to find a best match for a source block belonging
to some frame N, in a search area existing in a tempo-
rally displaced frame N-k. The region of the displaced
frame is referred as the search region. The current stan-
dards have source blocks both of 16 × 16 and 8 × 8
size. Some proprietary algorithms use source blocks of
32 × 32, 4 × 4 and 2 × 2. The 16 × 16 block size is
most commonly used with the 8 × 8 block size in ad-
vanced prediction modes for H.263 and MPEG-4. The
selection of whether a 16 × 16 or 8 × 8 block should
be used for the motion search is based on a comparison
of the minimum distortion between a 16 × 16 block
and four 8 × 8 blocks.

To determine how well a source block matches a
candidate displaced block, the distortion between the
source and target blocks is compared. The compari-
son criteria are generally based on distance and several
measures can be used based on complexity and effi-
ciency. The Sum of Absolute differences (SAD) is the
most commonly used criteria, as it reduces the com-
plexity of the implementation:

SAD =
N−1∑

i=0

N−1∑

j=0

|a(i, j) − b(i, j)|, N = 2, 4, 8, 16

The sum of absolute difference instruction (WSADB)
is designed to accelerate exactly this part of the motion
estimation function of a video encoder. The WSADB
instruction, shown in Fig. 9 can perform eight absolute
difference calculations in parallel, accumulate all of the
results and keep a running total. This allows a whole
row of an 8×8 block to be compared to a corresponding
candidate 8 × 8 block row in a single instruction.

Other instructions which play a role in accelerating
video applications include the WMADD instruction

Figure 9. The sum of absolute difference instruction.

which contributes to the improved IDCT performance
used in the residual compression and the WMAC which
allows efficient filtering operations for audio data.

4.4. Data Organization for Video

Video compression algorithms display predictable data
access patterns. For example, many operations are of-
ten limited to a 2 dimensional block (e.g 8 × 8). The
larger register file of the Wireless MMX unit can be
effectively used as a level-0 cache and the data locality
of the algorithm optimized. With sixteen 64-bit regis-
ters an entire 8 × 8 block can be stored in only eight
registers. This still leaves eight registers available for
intermediate data calculation and temporary storage.
This is particularly useful for the motion search used
in video encode as it enables the source 8 × 8 block
to be stored in the register file and reused for the com-
parison at each candidate search position. This dramati-
cally reduces the required load bandwidth of the search
algorithm, with the corresponding reduction in power
consumption.

Another method of utilizing the large register files
is to concurrently compute a number of different block
comparisons in parallel and keep all the running to-
tals in different registers. For example, with Wireless
MMX technology it is possible to perform a single pass
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half-pixel motion search, by calculating the 8 different
half-pixel block SAD calculations and keeping all the
intermediate results active. At the end of the single pass
through the data, the lowest SAD value is selected as
the best match. This technique makes maximum use of
the loaded data and again contributes to reducing the
power consumption by minimizing memory accesses.
It is also possible to use a combination of macro-block
storage and multiple output calculations to further im-
prove video processing efficiency.

5. Implementation

Wireless MMX technology was implemented as a co-
processor to the XScale microarchitecture in a system
on chip. The system was composed of XScale, Wireless
MMX, memory sub-system with instruction and data
caches each of 32 KByte size. The caches were orga-
nized as 32-way associative with round-robin replace-
ment method. The implementation supports the capa-
bility to scale the operating frequency of the processor.
The implementation also allows scaling the voltage.
As voltage decrease so does the maximum supported
frequency.

6. Power and Performance Results

The SIMD 64-bit architecture extensions offer im-
provement in performance on wireless video applica-
tions and offer interesting power savings opportuni-
ties. This section presents some preliminary results for
Wireless MMX technology acceleration on video de-
coding performance The results compare performance
and power consumption with and without Wireless
MMX technology enabled. An MPEG-4 simple pro-
file decoder [14, 19], running on a bare metal (no OS)
system, was used for the experiments. Different clock
frequency, different video data clips and bitrates were
used to demonstrate the benefits of the Wireless MMX
technology. As with any video decoder, the observed
results will vary with image content, resolution, bitrate,
operating system and other system considerations.

6.1. Kernel Acceleration

Figure 5 showed a typical distribution of the cycles
during a scalar implementation of the MPEG-4 video
decoder. This figure showed that the key kernels which
can be optimized for a video decoder using Wireless

Figure 10. Wireless MMX acceleration for key kernels ii MPEG-4
video decode.

MMX are the motion compensation (integer and frac-
tional), inverse DCT and color conversion. Word and
sub-word level data parallelism can be extracted ef-
fectively on these kernels. Figure 10 shows the typical
average acceleration on each of these kernels. Here
Int MC represents integer motion compensation. Also,
MC R and MC NR represent non-integer motion com-
pensation with and without rounding respectively for 8
× 8 macro block of image data. CC YUV RGB repre-
sent color conversion from YUV to RGB and Inv DCT
refers to 8 × 8 inverse Discrete Cosine Transforma-
tion (DCT) of 16 bit precision. The kernel routines
were optimized to take advantages of the optimized in-
structions (such as WMAC, WMADD, WAVG2 etc.).
Multi-sample techniques were used to make effective
use of the register file. Software pipeline, memory pre-
fetching was also used to reduce dependency on the
memory latency.

6.2. Application Acceleration

The motion compensation, color conversion and in-
verse DCT kernels comprise more than 60% of the
cycles of a scalar implementation of a video decode
applications (Fig. 5). The gain demonstrated in Fig.
10 directly translates to a performance improvement in
the end application. Figure 11 shows the frame rate of
a laboratory test of a video decoder running on test sil-
icon of the XScale microarchitecture with the Wireless
MMX unit enabled and disabled. The video codec is an
MPEG-4 decoder, simple visual profile, running on a
bare metal system (without OS) decoding the standard
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Figure 11. Framerate achieved with and without wireless MMX
for MPEG-4 decode of coastguard.

coast guard sequence [15] at GIF (352 × 288) resolu-
tion. At the same frequency, Wireless MMX technol-
ogy gives approximately a 60% improvement in decode
frames per second.

This improvement in processing efficiency can be
utilized in a number of ways.

• The frame rate can be maintained using a lower fre
quency (and power) to achieve it.

• A higher frame rate can be supported at the same fre
quency

• A high resolution video stream can be supported at
the same frequency.

6.3. Frequency Scaling

For many applications, the number of frames displayed
per second rate is kept constant. Video conferencing,
real-time streaming video are examples of such rate
controlled applications. Improvement on frames per
second offered by Wireless MMX technology can be
used to reduce the operating frequency while main-
taining the same performance, for a given frames per
second target. The savings in frequency is measured by
frequency scaling factor. Average frequency scaling is
measured as follows. Here fScalar and fSIMD refer to fre-
quency requirements of scalar and Wireless MMX im-
plementation respectively. Average frequency scaling
factor for Wireless MMX technology for video decode
applications can be measured by comparing the slope
of the graph shown in Fig. 11. For the measured data

in Fig. 11 the average frequency scaling is 1.6.

F S = fScalar

fSIMD
(1)

Since the power consumed in a device is linearly pro-
portional to the operating frequency, the frequency
scaling (FS) allows the device to consume a corre-
sponding smaller amount of power.

6.4. Voltage Scaling

Using frequency scaling with Wireless MMX technol-
ogy allows the same video frame rate to be achieved at
lower clock frequency. At this lower frequency it may
also be possible to reduce the supply voltage. As power
is a quadratic function of voltage, any reduction in sup-
ply voltage has a quadratic impact on power consump-
tion. Wireless MMX technology supports both voltage
and frequency scaling.

The impact of the voltage scaling on the power can
be quantified by measuring Power efficiency. Power ef-
ficiency between a scalar implementation and Wireless
MMX technology can be defined as follows.

P E = PScalar − PSIMD

PScalar
(2)

Here PScalar and PSIMD refer to power consumption
of scalar and Wireless MMX implementation respec-
tively.

Figure 12 compares the power efficiency between
Wireless MMX and a scalar implementation with both
voltage and frequency scaled compared to just fre-
quency scaled. The exact savings depends on the tar-
geted frame-rates, for higher frame-rate the difference
in frequency requirements (with and without Wireless
MMX) is higher offering a larger range for scaling the
voltage. It is also interesting to note that impact of
voltage scaling on the power efficiency is significant.
The experiments show that voltage scaling increase the
power efficiency improvement by up to ∼2.4×.

6.5. Adaptive Frequency and Voltage Scaling

Changing frequency and voltage during application
run-time can be used to take advantage of processor
idle time to reduce power consumption. There are many
possible algorithms [20, 21] to trigger voltage and fre-
quency changes which are beyond the scope of this
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Figure 12. Power efficiency improvement due to voltage scaling at
different video decode framerates.

Figure 13. Idle time improvement during video decode using wire-
less MMX technology.

paper, but many of these algorithms use a function of
processor activity and idle time to determine power
management policies. For rate controlled video decode
algorithms, the regularity of the frame-arrivals, frame-
deadlines simplifies the frequency and voltage man-
agement [21]. The more idle time between computing
the next frame and it being required is an opportunity
to reduce power consumption. Figure 13 shows that by
using Wireless MMX technology it is possible to com-
pute the frame earlier and have more processor idle
time where the voltage and frequency can be reduced
and power savings accrued.

Figure 14. Distribution of slack time between frames.

The voltage and frequency scaling algorithms typ-
ically have a lead time (for detection of power sav-
ing opportunity and the time to change between power
states). The transition time of frequency and voltage
changes takes a finite time to happen, in particular volt-
age changes may take many mSeconds. These two fac-
tors pose a lower bound on the usable idle time, i.e. an
idle time lower than this bound cannot effectively be
used for adaptive voltage and frequency management.

For the coastguard sequence at 30 frames a sec-
ond (GIF size), the histogram of the idle time between
frames (frame idle time) is shown in Fig. 14 This shows
that Wireless MMX technology can make use of volt-
age and frequency management more effectively due to
the additional idle time between frames. For rate con-
trolled video applications, this offers an opportunity for
extra power savings.

The processing time for each frame depends on the
number of motion vectors and their types (integer or
fractional). In a scalar implementation the decode time
of a frame varies considerably based on the motion
vectors, leading to a wider spread in the idle time dis-
tribution. In contrast, using Wireless MMX technology
the decode time for each frame does not vary as much
as the cost to process each motion vector is smaller.
This leads to a narrower distribution of the idle time. A
narrower distribution on the idle time can make it easy
to adopt many predictive algorithms [20] for power re-
duction, since the idle time is now more predictable.

To demonstrate that the advantage in idle time holds
true across various encoding rates and different types
of video sequences, percentage idle time has been mea-
sured for multiple scenarios. Figure 15 shows the per-
centage idle time as a function of video clip bit-rate
for three different GIF (352 × 288) video sequences,
with Wireless MMX unit enabled (WMMX) and dis-
abled (NoWMMX). It can be noted that the decline in
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Figure 15. Comparison of idle time vs. bitrate with and without
wireless MMX technology.

percentage idle time for Wireless MMX is of a lower
rate than without it.

7. Summary

Wireless MMX technology has been optimized to al-
low power effective wireless video applications. In this
paper we have described the architecture and instruc-
tion set of Wireless MMX technology as it applies to
the video technology.We have disclosed some prelimi-
nary measurements and benchmarks which display the
performance delivered by this technology. The relative
power saving also have been quantified for different
video clips and bit rates and the effect of frequency
and voltage scaling has been demonstrated.
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